
 3S-Smart Software Solutions GmbH Page 1 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

CODESYS Control V3
Migration and Adaptation

Document Version 4.0

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 2 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

CONTENT

1 PREFACE 4

1.1 Version Control System 4

1.2 Content of the Starter Package 4

1.3 Reference Implementations 4

2 PORTING TO A NEW PLATFORM 5

2.1 Step by Step 5

2.1.1 Configure your Runtime, using the RtsConfigurator 5
2.1.2 Get all necessary source files from SysTemplates 8
2.1.3 Finish Configuration with RtsConfigurator 8
2.1.4 Create Project to Compile 9
2.1.5 Adapting all files for communication 10

2.1.5.1 MainMyPlat.c 10
2.1.5.2 SysComMyPlat.c 10
2.1.5.3 SysTargetMyPlat.c 11
2.1.5.4 SysTimeMyPlat.c 11
2.1.5.5 sysdefines.h / sysspecific.h 11
2.1.5.6 Gateway.cfg 12

2.1.6 Test the communication 13
2.1.7 Adapt all files for a first download 13

2.1.7.1 MyPlat.devdesc.xml 13
2.1.7.2 SysCpuHandlingMyPlat.c 14
2.1.7.3 SysExceptMyPlat.c 15
2.1.7.4 SysMemMyPlat.c 15

2.2 Testing the communication 16

2.3 Debugging 18

2.3.1 Check the log messages 18
2.3.2 Device doesn’t appear in the scan 18
2.3.3 Unable to download but no exception 19
2.3.4 Exception at download 19
2.3.5 Communication Timeout after a few seconds/minutes 21
2.3.6 Other Errors 21

3 ADDING FEATURES TO THE RUNTIME 23

3.1 Change the Scheduler 23

3.1.1 Embedded Scheduler 23
3.1.2 Timer Scheduler 23
3.1.3 Multitasking Scheduler 24

3.2 Add Communication Channels 26

3.2.1 Serial 26

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 3 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.2.2 UDP 26
3.2.3 CAN 26
3.2.4 USB 27
3.2.5 SHM 27

3.3 Add other Features 28

3.3.1 Debugging Support 28
3.3.2 Full Trace Support 28

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 4 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

1 Preface

This document describes the basic approach to port the CODESYS Control runtime system to a bare
hardware without an operating system, as well as to a platform with an unsupported operating system.
This is a practical document and does not describe the concepts behind CODESYS Control or I/O
Drivers. To learn more about the concepts and special implementation details, please refer to the
document CODESYSControlV3_Manual.pdf which is delivered with every CODESYS Control SDK.

For systems with proprietary operating systems as well as for small embedded systems, we will start
with a very small, stripped down configuration of CODESYS Control which is called “Compact
Runtime”. This term describes only a minimal set of components with a limited configuration which is
necessary for communicating with CODESYS and to run an application on it.

The reason for this is just, that we have the least amount of adaptation work to do in the system layer
to get this working. If you need more functionality, you can configure one component after another into
the system. This way, the functionality which you need to implement will grow linearly and you can
more easily implement and test one after another. This reduces the complexity of this porting task
drastically.

1.1 Version Control System
We strongly recommend you to use some kind of Version Control System, like “Subversion”, “Clear
Case” or “SourceSafe” to maintain the changes to runtime system. It will help you to keep track of your
own changes in the beginning of the project and it will essentially support you if you wan to update your
runtime to a newer version at a later time.

Within this document, we will give you some hints on where you should check in the current state of
the sources. If possible with your version control system you should even tag those versions, that it’s
easier to find those revisions later.

But if you follow our Coding Guidelines, you don’t need to care too much about those tags. Because
then, you just need to copy the new files from your new CODESYS Control starter package over the
existing files and see the differences in the “SysTemplates” folder. Then you just need to make all
those adaptations to your own platform files and you are fine.

1.2 Content of the Starter Package
The base for this porting is a Starter Package of CODESYS Control for an “embedded” or “customer
specific” platform. This Starter Package contains all sources of the CODESYS Control runtime system.
It contains no platform dependant adaptation layer for your or any other CPU or platform.

For some platforms, 3S – Smart Software Solutions provides reference implementations. For those it is
possible to receive a package from your first level support. He can give you the most current files
which should fit your environment and requirements best.

1.3 Reference Implementations
In some cases, you will receive a reference implementation for your CPU or for a specific Evaluation
Board from your first level support of 3S – Smart Software Solutions. Even in those cases, we
recommend, that you work yourself through this guide and just take this reference implementation
really as what it is: Just a reference.

Especially you should not assume that those implementations are error-free or that they will work for
your specific application. Their aim is just to help you in the initial porting.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 5 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

2 Porting to a new Platform

This chapter describes the steps, starting from a plain delivery of a CODESYS Control Starter
Package, to a Runtime, which you are able to login to with CODESYS. For simplicity, we start with a
Compact Runtime here. That means, that we strip out some advanced functionality from the existing
components by setting the pre-processor define „RTS_COMPACT“ and if there is an „Embedded-
Version“ of a component, we favour this one ahead the full-featured version. This way, we have the
smallest possible Runtime and we need to implement the smallest amount of system components for
the beginning.

If you need more features for your runtime, please check chapter 3 of this document, to find out how to
add some of the most essential components to your runtime system.

2.1 Step by Step
To follow this step-by-step tutorial, we assume that you have a specific project layout. For simplicity,
we call the new Platform „MyPlat“. So you should replace this name everywhere with the name of your
specific CPU-, OS- or Boardname.

We don’t want to focus on a specific compiler or a specific platform. So most of the descriptions are
kept very neutral in respect to this. Depending on your specific hardware, there might be some more
steps involved, which are not mentioned here.

The expected file layout looks like this:

• Components
Here you will find all generic code of our runtime core. You should never change any of those
files for your adaptation. If you really have the need to change something here, you should
copy this specific component to your platform directory, rename it and adopt it for your project.
Note: Renaming is essential, because otherwise the component will be faulty marked as a 3S
component!

• Platforms

o Native

 MyPlat

• rtsconfig
This folder contains the configuration of the runtime which we create
with our „RtsConfigurator“.

• Sys
This folder will keep all source files, which need to be adopted for our
platform.

• Projects
Here, you should place your project-/makefiles for your specific
compiler.

2.1.1 Configure your Runtime, using the RtsConfigurator
The RtsConfigurator is used to manage a collection of Components that build up a CODESYS Control
runtime system. In this process, the RtsConfigurator helps you in resolving the dependencies between
the components dynamically. You can select the components in the top left field by categories or in the
bottom left field from a sorted list. If the currently selected components have unresolved dependencies,
they are displayed on the right. There you can decide, how you want to resolve them.

Note: Optional dependencies and implicit dependencies are not resolved. Such an implicit dependency
might be: CmpBlkDrvCan needs a CAN-Mini-Driver to work. But because this Mini-Driver has registers
itself at the CANL2 layer and not the other way, the dependency to the Mini-Driver is not known.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 6 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• Before we can start the RtsConfigurator, we have to create the file structure, like it is described
in section 2.1:

• Start the RtsConfigurator from RtsConfigurator -> Bin:

• Select Components Folder:

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 7 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• Select the System Folder

• Set OS Prefix

• Add the following components to your project by selecting them in the bottom left list:

CmpAppEmbedded
CmpBinTagUtil
CmpBlkDrvCom
CmpChannelMgrEmbedded
CmpChannelServerEmbedded
CmpChecksum
CmpCommunicationLib
CmpDevice
CmpEventMgr
CmpIecTask
CmpIoMgrEmbedded
CmpLogEmbedded
CmpMemPool
CmpMonitor
CmpNameServiceServer
CmpRetain
CmpRouterEmbedded
CmpScheduleEmbedded
CmpSettingsEmbedded
CmpSrv
SysCom
SysCpuHandling
SysExcept
SysFileFlash
SysFlash
SysInternalLib
SysMem
SysTarget
SysTime

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 8 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Note: If your Runtime is newer than the version described in this document, you might
encounter some new dependencies. Please resolve them manually if necessary.

• After that, you will see the following list of errors in the “Messages” window:

This gives you a list of files, that you need to implement, to adopt the CODESYS Control
Runtime with the current settings to your new platform. The adaptation will be done in section
2.1.5 and 2.1.7. Now we will leave the RtsConfigurator open in the background and start
copying the required files...

2.1.2 Get all necessary source files from SysTemplates
The Folder Platform -> SysTemplates of the StarterPackage contains some examples and scaffolds to
build up your own adaptation files. Based on the list printed by the RtsConfigurator in section 2.1.1, you
should copy and rename all necessary files from “Platforms -> SysTemplates” to “Platforms -> Native -
> MyPlat -> Sys”.

You might notice, that all files in the SysTemplates folder have the postfix “OS”. This will be replaced
by our own name. In our example this is “MyPlat”, but you should use your own description here.

SysTemplates/SysFlashOS.c -> Native/MyPlat/Sys/SysFlashMyPlat.c
SysTemplates/SysExceptOS.c -> Native/MyPlat/Sys/SysExceptMyPlat.c
SysTemplates/SysComOS.c -> Native/MyPlat/Sys/SysComMyPlat.c
SysTemplates/SysTimeOS.c -> Native/MyPlat/Sys/SysTimeMyPlat.c
SysTemplates/MainOS.c -> Native/MyPlat/Sys/MainMyPlat.c
SysTemplates/SysMemOS.c -> Native/MyPlat/Sys/SysMemMyPlat.c
SysTemplates/SysCpuHandlingOS.c ->
Native/MyPlat/Sys/SysCpuHandlingMyPlat.c
SysTemplates/SysTargetOS.c -> Native/MyPlat/Sys/SysTargetMyPlat.c

Additionally to this, you should also copy some header files from the SysTemplates. We will place
those files not to the “Sys”-Folder, but outside, so that they are clearly seperated from the sources.
Those header files are containing the configuration of the runtime as well as some platformspecific
definitions.

SysTemplates/sysspecific.h -> Native/MyPlat/sysspecific.h
SysTemplates/sysdefines.h -> Native/MyPlat/sysdefines.h

2.1.3 Finish Configuration with RtsConfigurator
Go back to the RtsConfigurator and open the menu Options -> Folders of system components just to
close it again. This way, the RtsConfigurator is doing a new scan for the files and the error messages
from the “Messages” window should disappear.

Note: If there are still some error messages, please check the that you selected the correct paths and
that the “OS Prefix”, selected in the Options -> Project options is the same as the postfix of the files,
which you copied to your folder (postfix = the name with which you substituted the postfix “OS” from
the default filename. In our example this is “MyPlat”).

Now you can save the project file in the following path:
Platforms -> Native -> MyPlat -> rtsconfig

We recommend to name it “compact.rcp”, because this is the configuration of our compact runtime.
This name will be used to generate some header files, which we are including later.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 9 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Now, that we saved everything, we can also change the paths in our RtsConfigurator Project from
absolute to relative:

• Options -> Component folders

• Options -> Folders for system components

• Save again!

Note: This is a good time to check everything in into your version control system. Later on I will only
refer to files, which need to be added explicitly, based on this version.

• After you saved the project, you can generate the output files:
Output -> Generate all output files

• The most important files for us are the following:
compact.c_
compact.h
compact_NotImpl.h

2.1.4 Create Project to Compile
Now you should create a new project, using your compiler and maybe the IDE which comes with it.
How this works exactly depends heavily on your compiler and is not covered here. But there are a few
settings, which will be necessary in any way:

• Save the Project under: Platforms -> Native -> MyPlat -> Projects

• Set the Include Paths to (if possible with relative paths):
Components
Platforms -> Native -> MyPlat

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 10 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• On systems with less then 32Bit address width, you should set your memory model to s.th. like
“huge” or “large” (please check your compiler manual). Because we might need to address
buffers, which might be more far away as the segment size of your processor.

• Add all C-Files, which are listed in the file compact.c_ to your project.

If you now try to compile, it depends on your toolchain if it works or not. But in general you should
encounter only some small issues, like unnecessary include directives. Just remove them as
necessary.

2.1.5 Adapting all files for communication

2.1.5.1 MainMyPlat.c
This file should contain your “main” entry point. On an embedded platform, you will usually have
another processor entry in which you need to setup some of the basic peripherals or memory
mappings. It’s up to you if you integrate this to this file or not. We will assume that your entry begins in
a C-Function, called “main()”.

At the top of this file, there is an include statement for “myPlatform.h”. You need to change this to
“rtsconfig/compact.h”. This file contains basically a list of all configured components, which we will pass
to CMInit() to initialise our system.

For now we will not load the configuration settings from a file, but we will configure the system statically
(see 2.1.5.5). So we will pass NULL as the name of the configuration file. The minimal version of our
main() function will look like this:

int main() {
 RTS_RESULT Result;

 Result = CMInit(NULL, s_ComponentList);

 while(!s_bExitLoop) {
 CMCallHook(CH_COMM_CYCLE, 0, 0, FALSE);
 }
 return 0;
}

Note: MainLoadComponent() and MainUnloadComponent() can be used for dynamically linked
systems, to load new components dynamically at system startup. This is not necessary for our small
runtime, because we will link our system statically.

2.1.5.2 SysComMyPlat.c
The communication between CODESYS and CODESYS Control will be done over a serial link. The
driver for the serial interface needs to be implemented in this component.

The general driver scheme which is necessary is as follows:

• SysComOpen()
Just make a wrapper for SysComOpen2().

• SysComOpen2()
Setup the serial interface with our configuration settings. Especially set the baudrate of the
interface.

• SysComClose()
Disable the serial interface. Especially you should disable the hardware interrupts.

• SysComSetSettings() / SysComGetSettings()
These functions are not used in our communication layer, so you can leave them blank for
now.

• InterruptHandler()
Register your own interrupt handler for send- and receive interrupts. Use the buffers “sendBuf”
and “recvBuf”, which are already declared in this file for your send and receive packets.

o On a receive interrupt: read byte(s) and write it to the “recvBuf”.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 11 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

o On send interrupt: check if there is something left in the “sendBuf” and write it to the
chip.

• SysComRead()
Read as much as you can from the “recvBuf” and return it to the user. For simplicity it is also
possible to return only one byte at a time, but this will produce more system overhead and is
only recommended for the first tests.

• SysComWrite()

o If “sendBuf” is empty, write first character directly to the chip and fill the rest into the
“sendBuf”.

o If “sendBuf” is full, just append everything to “sendBuf”.

Note: Remember to disable interrupts during manipulation of the buffers!

2.1.5.3 SysTargetMyPlat.c
This component returns the target identification, like: TargetID, VendorID, NodeName, Serial Number,
... . Most of the parameters are already returned by the higher-level component, and are taken from the
file “targetdefines.h”, which is part of your delivery (see 2.1.5.5).

In this file, you just have to return the NodeName, which is displayed in the Device Scan Dialog. But for
the first tests you can leave it as is.

2.1.5.4 SysTimeMyPlat.c
This component provides some basic functions for the runtime to measure relative timings. The time
values returned by the functions from this file have no relations to a realworld time, so for example they
can not be converted directly to a fix UTC time. Usually the time is measured since the system startup
and that’s enough, because the functions are just used to measure relative times.

• SysTimeGetMs()
Returns a relative timestamp in milliseconds.

• SysTimeGetUs()
Returns a relative timestamp in microseconds.

• SysTimeGetNs()
Returns a relative timestamp in nanoseconds.

Depending on your hardware, you can use a free programmable system timer or a timestamp counter
to determine this time. Examples for some sources in some architectures:

• X86: Timestamp Counter (TSC):
With every processor cycle the x86 increments this counter by one. So you get the number of
processor cycles since system startup.

• PPC: Timebase register (TB):
This counter is incremented with the frequency of the bus. You need to check your hardware
manual to determine the exact frequency.

• ARM and others:
If no such counter is available, you can program a periodic timer to get a high-precision system
time. Note, that you don’t have to generate interrupts, but in most cases you can just read the
current value of the timer. That’s much more efficient then generating permanently interrupts
and counting these.

2.1.5.5 sysdefines.h / sysspecific.h
For the Platformspecific configuration, we differentiate between those two include files. Both files are
included in every source file, which is built in the CODESYS Control Runtime. But anyway, they are
both playing different roles in the configuration:

• sysdefines.h
This file contains and includes everything which belongs to the configuration of the runtime
system. In the end it should really be a collection of defines and configuration entries, which
are configuring the system.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 12 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• sysspecific.h
In contrary to sysdefines.h this file should only define some compiler-, OS- or CPU-specific
things which are necessary on this platform. For example: HUGE_PTR, CDECL, ...

Because the sysdefines.h contains the configuration of the system, we also include the header file,
generated by the RtsConfigurator here. You should add an include statement for
“rtsconfig/compact_NotImpl.h”:
#include <rtsconfig/compact_NotImpl.h>

This file is important, because it defines which components are not contained in our system. Some of
our runtime system components have optional dependencies. And to disable those dependencies in a
statically linked application, we need to set those defines.

You should also add a include statement for the file “targetdefines.h”, which was included in our SDK.
This file contains your VendorID, TargetID, Target Signature, Just copy it to Platforms -> Native ->
MyPlat:
#include <targetdefines.h>

Because we have no Filesystem, yet, we cannot load any configuration file. Therefore we included the
component CmpSettingsEmbedded instead of CmpSettings in our configuration of the compact
runtime. The full component CmpSettings is reading and writing the configuration entries from and to a
file on the filesystem. The embedded version of this component implements the exact same interface
but uses the configuration settings which are set in sysdefines.h:
/**
 * Defines, used only in CmpSettingsEmbedded.
 * Defines the configuration settings, as well as free spaces,
 * to add new settings.
 * The format is:
 * “ComponentName”, “KeyName”, Value
 * If the “KeyName” is 0, this slot is reserved for new keys,
 * which might be added to this component.
 */
#define SETTG_ENTRIES_INT \
 {“CmpRouter”, “NumRouters”, 1}, \
 {“CmpBlkDrvCom”, “Com.0.Port”, 1}, \
 {“CmpBlkDrvCom”, “Com.0.Baudrate”, 115200}, \
 {“CmpMy”, 0, 0}, \
 {0, 0, 0}
#define SETTG_ENTRIES_STRING \
 {“CmpRouter”, “0.MainNet”, “MyCom”}, \
 {“CmpBlkDrvCom”, “Com.0.Name”, “MyCom”}, \
 {“CmpMy”, 0, 0}, \
 {0, 0, 0}

2.1.5.6 Gateway.cfg
This is a configuration file on your development host. It is used to configure the CODESYS Gateway.
Specifically we want to add our serial port as a new communication interface to it.

1. First you should find out which serial port your target is connected to. If you have a target that’s
connected using a USB link, you may want to check the device manager of Windows to find
out which com port is assigned to your device.

2. Got to your CODESYS installation directory -> GatewayPLC and open the file gateway.cfg.

3. Add the component “CmpBlkDrvCom” to the list of components:
[ComponentManager]
Component.1=CmpBlkDrvCom

4. Add a new Router instance:
[CmpRouter]
1.MainNet=MyCom

5. Configure the serial port:
[CmpBlkDrvCom]
Com.0.Port=19
Com.0.Name=MyCom

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 13 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Com.0.Baudrate=115200
Com.0.EnableAutoAddressing=1

Please restart your Gateway (using the systray icon).

To check if the communication works, you can use the tool “portmon” from sysinternals to monitor the
traffic on your serial port. After you made the configuration settings above, you should see some
packets sent by the Gateway if you try to scan the network with CODESYS.

2.1.6 Test the communication
After you made all the adaptations above, you should already see the device in the scan dialog:

If not, check the section 2.3.2 for some tipps how to debug the problem.

2.1.7 Adapt all files for a first download

2.1.7.1 MyPlat.devdesc.xml
You should create a so called “device description” for your device. As a starting point, you should
check out the files in Templates -> Devices of your CODESYS Control SDK. There you will find
templates for various architectures and various configurations. Go to the folder of your target CPU and
take one of the device descriptions with the prefix “Compact_” as a starting point.

The device description should already have the correct compiler settings. For the first tests, you should
only change the device name:

• DeviceDescription -> Device -> DeviceIdentification

o Type: The default is 4096 and this is suitable for every logical PLC.

o Id: This is a combination of your VendorID and your TargetID. This should already
match your settings.

o Version: The version can be used by you to force the user to use a device description
that matches your Firmware.

• DeviceDescription -> Device -> DeviceInfo

o Name: The name of your PLC when you select it in CODESYS.

o Description: Description which is displayed when you select your PLC.

o Vendor: Your Vendor Name

o Icon: Reference to an Icon that is displayed in the device tree (*.ico, 32x32).

o Image: Image, which is displayed near the description, when you select your PLC in
CODESYS (*.png, *.jpg, full-sized image, auto-scaled).

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 14 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

To select your PLC in CODESYS, you need to install it first. Go to Tools -> Device Repository -> Install
and select your Device Description. After you pressed “OK”, you should find your newly installed device
with the name that you specified in the device description in the device list.

2.1.7.2 SysCpuHandlingMyPlat.c
This component contains some CPU-specific low level functionality. It usually consists of much
assembler code, which is dependant on the CPU and the C-Compiler. Before you start implementing
this functionality from scratch, you should contact your first level support at 3S – Smart Software
Solutions to get an example for your CPU. Even if it doesn’t match the syntax of your Assembler it
should be easier to port it than to start from scratch.

If your platform is too different and you need to start from scratch, you should start with the function
SysCpuCallIecFuncWithParams() and implement it similar to this:

int CDECL SysCpuCallIecFuncWithParams(void* pfIECFunc, void* pParam,
int iSize)
{
 void (*pfFunc)();
 void *pStack;
 int iStackSize = (iStackSize + 3) & ~3;
 pfFunc = pfIECFunc;
 fun = (PFFUNCWITHPARAMS)pfIECFunc;

 __asm {
 sub SP, iStackSize
 mov pStack, SP;
 }
 memcpy(pStack, pParam, iSize);
 pfFunc();
 memcpy(pParam, pStack, iSize);
 __asm {
 add SP, iStackSize
 }
 return ERR_OK;
}

Note, that this code only works, if your compiler doesn’t place the local variables on the stack, but
keeps them in callee save registers.

The function SysCpuGetCallstackEntry() and is used to unwind the callstack when debugging or in
case of an exception. This code is pretty similar on most platforms, as most callstacks are just saved
in form of linked lists on the stack. The function SysCPUGetCallstackEntry2() is just an extended
version, which differenciates between a C and an IEC context. That’s only important if your C-Compiler
uses a different stack layout as the IEC Compiler of CODESYS. The unwinding code should look
something like this:

typedef struct stack {
 struct stack *next;
 void *eip;
} stack_t;
RTS_RESULT CDECL SysCpuGetCallstackEntry(unsigned long *pulBP, void
**ppAddress)
{
 stack_t *tStackEntry = (stack_t*)pulBP;

 if (pulBP == NULL || *pulBP == 0 || ppAddress == NULL)

 if (ppAddress != NULL)
 *ppAddress = NULL;
 return ERR_PARAMETER;
 }
 if(!CAL_SysMemIsValidPointer((void *)&tStackEntry,4, 0) ||
 !CAL_SysMemIsValidPointer((void *)tStackEntry->next,4, 0) ||
 !CAL_SysMemIsValidPointer((void *)tStackEntry->next->eip,4, 0))
 {
 *ppAddress = 0;
 return ERR_FAILED;
 }

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 15 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 *ppAddress = tStackEntry->next->eip;
 *pulBP = tStackEntry->next->next;

 return ERR_OK;

}

There are two additional functions, which are used for atomic access of bits. These are called
SysCpuTestAndSet() and SysCpuTestAndReset(). On nearly every CPU architecture, it should be
possible to do an atomic read-modify-write operation or even an atomic bit-operation. If it is possible on
your CPU, you should implement this API function accordingly. If it is not possible, or you just want to
do this later, you can use the base implementation, which is just doing an interrupt lock around the
read-modify-write operation:

RTS_RESULT CDECL SysCpuTestAndSet(unsigned long* pul, int iBit)
{
 return SysCpuTestAndSetBase(pul, iBit);
}

RTS_RESULT CDECL SysCpuTestAndReset(unsigned long* pul, int iBit)
{
 return SysCpuTestAndResetBase(pul, iBit);
}

All other functions are only for debugging. They are discussed in section 3.3.1.

2.1.7.3 SysExceptMyPlat.c
Beside the two install and exit functions, this API contains only one API function which you need to
install, that is called SysExceptMapException(). This function simply maps the exception number,
which is reported by your CPU to the Exception IDs which are known by CODESYS. For a list of the
available exception IDs, have a look in SysExceptItf.m4. There is a list of defines, starting with
RTSEXCEPT_*.

To handle an exception, you need to install an exception handler on your hardware. How this works
depends pretty much on the hardware or on the fact if an OS is used or not. But in general, you should
try to catch the exception as soon as possible.

After you caught the exception, you need to be able to get the cause of the exception. The cause of the
exception will be later expressed by an exception code, which is a 32Bit number. Additionally you have
to determine the code location where the exception occurred and the base-pointer to unwind the call-
stack later.

For example – if the exception state was pushed on the stack, your code may look something like this:
void SysExceptHandler()
{
 RegContext reg;
 unsigned long *pStack;
 void *pSP;
 void *pBP;
 __asm {

 mov pStack, SP;
 mov pSP, SP;
 mov pBP, BP;
 }
 reg.IP = pStack[EXC_IP_IDX];
 reg.SP = pSP;
 reg.BP = pBP;
 CAL_SysExceptGenerateException(
 0, pStack[EXC_TYPE_IDX], reg);
}

2.1.7.4 SysMemMyPlat.c
SysMem provides an API for the runtime and the IEC Application to allocate or free two different kinds
of data:

1. Data: This is used to manage general heap data of the runtime and the application.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 16 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

2. Areas: The areas are used to store the code, data, retain data and I/Os of the IEC Application.

On most systems your C-Library will provide some malloc and free functions for you. If so, you should
use them to implement SysMemAllocData(), SysMemReallocData() and SysMemFreeData().

If you like, you can place the areas of your IEC Application at a specific address. For this, you need to
tell your linker that this memory range is reserved:

• Keil uVision: “Options for ...” -> “LXXX Misc” -> Reserve
• TASKING.VX-Toolset: Add a new memory section to <projectname>.lsl and mark it as

“Reserved”.

• GNU Linker: Reserve Memory area in the linker script.
If you made sure that your C compiler doesn’t use the memory area anymore, you can just return the
fix address in SysMemAllocArea(). In SysMemFreeArea() you can either zero the whole area, or you
can just do nothing.

Alternatively, you can just forward the call to SysMemAllocData() and SysMemFreeData():
void* CDECL SysMemAllocArea(char *pszComponentName, unsigned short
usType, unsigned long ulSize, RTS_RESULT *pResult)
{
 return SysMemAllocData(pszComponentName, ulSize, pResult);
}

RTS_RESULT CDECL SysMemFreeArea(char *pszComponentName, void* pCode)
{
 return SysMemFreeData(pszComponentName, pCode);
}

As long as the CODESYS Codegenerator supports code relocation for your target, you can leave
SysMemAllocCode() and SysMemFreeCode() at the default implementation, which falls back to
SysMemAllocData() and SysMemFreeData(). If it doesn’t, you need to use a fix address in the Runtime
as well as a fix start-address for the areas in your Device Description. So if your target doesn’t support
relocation, go to your device description and check that it has a statement like that:

<ts:setting name=”start-address” type=”integer” access=”visible”
xmlns:ts=”http://www.3s-software.com/schemas/TargetSettings-0.1.xsd”>
 <ts:value>0xE04000</ts:value>
</ts:setting>

2.2 Testing the communication
• To test the communication basically, you should start with a very simple project with a cyclic

counter:

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 17 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• Double click on the device in your device tree, and open the communication settings:

• Set the “active path” to your PLC and try to log in. You should see the following dialog box:

Note: If that dialog box doesn’t appear, you will most likely have an issue in SysTimeMyPlat.c:
SysTimeGetMs(). Because this function is used to detect communication timeouts and if the
timebase is wrong, this leads to such communication errors.

• If you say “Yes” in the previous dialog, you should see a progress bar in the status bar:

• If everything worked fine, your project should now be successfully downloaded and your
program should be in stop:

• If it didn’ work:

o You get an error message “Create Bootproject failed”:
Try to logout and login again. If this works, you just have a problem with your flash
driver. The PLC was unable to save the bootproject, but the application should run fine
anyway.

o You get an error message “Communication Timeout”:
Most likely your PLC crashed during download. You should attach your debugger, try
again and have a look into section 2.3.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 18 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

2.3 Debugging

2.3.1 Check the log messages
You should have the component CmpLogEmbedded in your runtime. This component is used by other
components as well as your IEC application to collect all kinds of debug, info and error messages.
There are three ways to see those logs:

• Logger page:
Double click on your device, switch to the “Log”-tab and press the update button.

Note, that this only works if your communication with the runtime works.

• Serial Terminal:
If you have a spare serial port, you can add and implement the component “SysOut” to output
the messages to your serial port.

• Debugger:
If you don’t have a spare serial port nor a working communication, you can use your debugger:
Find out the address of the symbol “s_StdLogEntries” and add this address to the memory
window of your debugger. If you adjust the number of displayed entries per line to
LOG_MAX_INFO_LEN+20, you can see a readable log, like this:

2.3.2 Device doesn’t appear in the scan
• Before we start debugging the problem. We should check our configuration:

o Gateway.cfg (check the configuration of your COM port, as described in 2.1.5.6.

o Restart your Gateway (using the systray icon) and check if it sends s.th. on the
serial port when you press the “Scan network” button. You can check the traffic with
the tool “portmon” from sysinternals.

o Check your configuration in “sysdefines.h”. Check if you are using the correct device
and the correct baudrate.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 19 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

o Check if your driver supports the configured baudrate and if you are using the correct
serial port.

• Before we are debugging the driver on the Runtime side, we should start monitoring the
packets, which are sent over the bus. Please start “portmon” from sysinternals, stop the
CODESYS Gateway and connect portmon to your serial port. After a restart of the Gateway
you should already see some packets on the bus. That means, that your host is configured
correctly.

• If your serial driver is working (which we assume here), then it’s only possible, that one of the
components is not configured correctly and discards the packet. In the case of a device scan,
we are talking directly to the component CmpDevice. So we should check with breakpoints in
various positions if the packet came through:

o SysComMyPlat.c: SysComOpen()
Step through this function and check if the correct port is opened and if you configured
the hardware correctly.

o CmpRouter.c: HandleLocally()
Set a breakpoint into the „default“ branch and check in s_protocolHandler[] if the
handler, which we try to call is registered there.
If you see that the handler for the scan request is not registered, you should check if
CmpDevice is configured into your runtime and if it is loaded correctly. If you can’t find
the reason in the configuration, you should try to debug through the init code of
CmpDevice. Just set a breakpoint into CmpDevice.c: ComponentEntry() to see if the
component is loaded and configured.

o CmpDeviceSrv.c: DeviceServiceHandler()
If the scan request is already this far, everything looks fine for the request and you will
need to debug the response path. There is no other way than stepping through the
whole response path and have a look on all error conditions. You need to find out, why
the request was accepted but the response was never sent.

2.3.3 Unable to download but no exception
If you are using the CmpAppEmbedded and you are not able to login, you most likely miss a setting in
your device description to enable the compact download, which is used by CmpAppEmbedded >=
V3.4.1.0. This is an optimization, which is done for small embedded devices and changes the
download format.

<DeviceDescription>
 <Device>
 <ExtendedSettings>
 <ts:TargetSettings>
 <ts:section name=”runtime_features”>
<ts:setting name=”compact_download” type=”boolean” access=”visible”
xmlns:ts=”http://www.3s-software.com/schemas/TargetSettings-
0.1.xsd”><ts:value>1</ts:value></ts:setting>

Note: This setting has no influence on the format of your bootproject.

2.3.4 Exception at download
Your device already appears in the scan and you are able to perform a login. For the first test, you
should create an empty application and try to download this.

When you log in for the first time you should get a pop up dialog that informs you that no application is
on the device and asks you if you want to perform a download. If this doesn’t appear, your
communication is not working, yet and you should have a look into section 2.3.2.

If you get an exception at download, this exception will most likely appear within our generated init
code. But anyway this may have a few different causes:

• Compiler Settings:
First of all, you should double check your compiler settings in your device descriptions. These

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 20 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

should exactly match your device. Take care about CPU, C-Compiler specific settings (only
necessary on some architectures), FPU.

• Memory Layout:
Check that the areas that are allocated in SysMemMyPlat.c are really free and correctly
allocated. Check how they match to the areas of your device description.
Note: If you make an “update device” deleted areas may still exist in your project. So please
create a new project or add a new PLC to your project if you changed the number of areas in
your device description!

• SysCpuCallIECFuncWithParams
Check if your implementation of SysCpuCallIECFuncWithParams() works as expected.

To debug this problem, you should start in the function AppRunAfterDownloadCode() of CmpApp or
CmpAppEmbedded. Set a breakpoint to this function and try to log in into your device. We assume that
you hit this breakpoint before the actual exception.

Step through this function and check where it crashes. Most likely it will crash in one of the calls to
SysCpuCallIECFuncWithParams. Depending on that we have the following possible error causes:

• pfReloc:

o SysCpuCallIECFuncWithParams() crashes already when trying to call the function
pointer:
On a 16 Bit platform you should check the width of the function pointer. On all other
systems you have most likely a wrong area offset specified, or your implementation of
SysCpuCallIECFuncWithParams() is not working.

o The call crashes somewhere in the IEC code:
That means that the parameters which you passed to the function over the stack,
where not correct, that you have the wrong compiler settings (FPU, Compiler Type,
Architecture,...) or that the memory area that you returned in SysMemAllocArea() was
wrong.

o On architectures with segmented memory, you should check the settings “code-
segment-size” and “data-segment-size” in the “memory-layout” of your device
description.

• pfCodeInit

• pfGlobalInit

• pfDownloadPOU

o Check if this function is called and check if the function pointer is valid.

o This function is called over an indirection of the function call table of our IEC
application. So maybe there was already a fault in pfGlobalInit where this table is
setted up.

If you can’t find the issue by your own, you should send the following information to your first level
support contact at 3S – Smart Software Solutions:

• Call Stack:
At least you need to find out the position, where the exception occurred. Also determine the
kind of exception and maybe why it occurred (e.g. TLB load exception because of a NULL
pointer access).

• Device Description:
You can send either your device description XML file or create a project archive out of
CODESYS.

• Memory Layout:
Describe where your memory areas are allocated. It’s important to know if you have fix
addresses for your memory areas or if you allocate them dynamically.

• Code Snippets:
It will be much of help if you add your implementation of SysCpuCallIECFuncWithParams() to
your support request.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 21 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

2.3.5 Communication Timeout after a few seconds/minutes
The communication timeout is calculated based on the time returned by SysTimeGetMs(). So when
you get a timeout after some time, it is most likely because of a wrong calculation there. A very
common error would be that you have too early wrap around in the timer value.

Abbroach to solve this:

• Temporarily set the implementation of SysTimeGetMs() to this:
static unsigned long s_ulTimeMs;
unsigned long CDECL SysTimeGetMs(void)
{
 return s_ulTimeMs++;
}

• Try to implement SysTimeGetUs() correctly.

• Create a small test project like this:
PROGRAM PLC_PRG
VAR
 us: SYSTIME;
 res: UDINT;
 last_us: ULINT;
 start_us: ULINT;
 error: BOOL;
END_VAR

res := SysTimeGetUs(pUsTime := start_us);
res := SysTimeGetUs(pUsTime := us);

WHILE (us – start_us) < 500 DO
 res := SysTimeGetUs(pUsTime := us);
 IF us < last_us THEN
 error := TRUE;
 END_IF
 last_us := us;
END_WHILE

• Verify your implementation of SysTimeGetUs() with the project above:

o The time, returned by SysTimeGetUs() should be continuously growing until it wraps
around at the boundary of the RTS_SYSTIME datatype.

o Check with an external clock if the time base of SysTimeGetUs() is correct.

• Make SysTimeGetMs() behave similar to your SysTimeGetUs() implementation.

• Make sure that your intermediate values within your calculation don’t exceed the boundary of
the RTS_SYSTIME data type.

Another error source is the serial block driver. This might have problems with some combinations of
buffer sizes. So check the following definitions in sysdefines.h:

• BLKDRVCOM_MAX_SER_READSIZE: Maximum number of bytes that are read with one call
of SysComRead. Recommended values are 1..1024.

• NETSERVER_BUFFERSIZE: Keep this value above 1024

2.3.6 Other Errors
Here are a few things which you need to check if you couldn’t find a hint for your problem in the
sections above:

• Memory allocation at startup failed:
Set a breakpoint in SysMemAllocData() and start the runtime system. You should not hit this
breakpoint. If you hit it anyway, you should check why, and try to solve it.
Known symptoms:

o Application download just hangs in keep-alive ping pongs and doesn’t respond
anymore.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 22 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

o The device doesn’t appear in the scan anymore.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 23 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3 Adding Features to the Runtime

One of the big advantages of the version 3.x of the CODESYS Control Runtime in comparison to
version 2 is the flexibility. We just started with a Compact Runtime which provides only a very basic
scheduler (CmpScheduleEmbedded + CmpAppEmbedded), no I/O Drivers (CmpIoMgrEmbedded), no
Routing (CmpRouterEmbedded) and no Debugging Support (no CmpAppBP, CmpAppForce).

But depending on our requirements, we can extend our runtime system very easily by exchanging
some components or adding others to our system.

We are using the RtsConfigurator again for this task, because it helps us resolving all necessary
dependencies and sets the correct defines in compact.h and compact_NotImpl.h. With every Feature
which is described in this chapter, we are starting again with a plain Compact Runtime.

3.1 Change the Scheduler

3.1.1 Embedded Scheduler
This schedule is already the default of the Compact Runtime, so no change is necessary. The
scheduling is done without an external timer event. The CPU is just polling for communication events
or for an IEC “task” which needs to be executed and executes it if the time has come.

This means:

• As long as an IEC task is running, the communication hangs completely.

• The IEC tasks cannot interrupt each other.

• If one communication cycle takes a bit longer it can produce a jitter for the start of the IEC
task.

So in fact this scheduler can handle multiple, periodic IEC tasks but it is non deterministic.

3.1.2 Timer Scheduler
This scheduler fits well on small embedded systems, that provide more than one timer. So it is possible
to setup multiple periodic IEC tasks on different timers. Therefore it is possible that a higher priority
timer interrupts a lower priority one. Furthermore, the communication is running in a background loop
and cannot harm the execution of the IEC tasks.

Additional Components:

• CmpScheduleTimer

Dependencies:

• SysTimer

This feature depends on the new System Interface “SysTimer”, which needs to be implemented for
your platform. So copy SysTimerOS.c from the SysTemplates to SysTimerMyPlat.c in your adaptation.
In generell this interface consists of the following API:

• SysTimerOpen()
Create a new timer handle, associated with a real system timer.

• SysTimerClose()
Free timer handle.

• SysTimerGetContext()
Get current context of one of the timers. This function is called externally, not from within the
timer context. [optional]

• SysTimerFitTimer()
Check if the passed timer handle matches the priority and interval which is also passed to this
function. This is used to reuse existing timers for multiple tasks.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 24 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• SysTimerStart()
Start a specific timer and enable it’s interrupts.

• SysTimerStop()
Stop a specific timer or at least disable the generation of the timer interrupts.

• SysTimerGetTimeStamp()
You should return the current timer value, if you have a readable counter (incrementer or
decrementer). [optional]

• SysTimerSetInterval()
Change the interval of an existing timer. [optional]

• SysTimerGetInterval()

Return the configured interval of an existing timer.

• SysTimerMaxTimer()
Return number of available timers.

• SysTimerGetMinResolution()
Return the Minimum Resolution of a timer.

• SysTimerRegisterBasePointer()
This API is obsolete.

• SysTimerDebugLeave()
This API is obsolete.

• SysTimerDebugEnter()
This API is obsolete.

3.1.3 Multitasking Scheduler
This is a fully pre-emptive multitasking scheduler. It creates a real system task or thread for every IEC
Task using the SysTask component. This also means that you will need some low-level task-/thread
handling on your platform.

Additional Components:

• CmpSchedule

Dependencies:

• SysTask

• SysEvent

This feature depends on the two new system interfaces “SysTask” and “SysEvent”. The SysTask
component assumes that you have a realtime priority based scheduler. The Events are used to
schedule the tasks. That means that every IEC task has it’s own event on which it is waiting until the
scheduler signals the event to wake the task up.

The SysTask interface consists of the following system dependent API:

• SysTaskCreate()
Create a new task but keep it in suspended state.

• SysTaskExit()
Terminate a foreign task (no suicide), but give it enough time to end it’s cycle.

• SysTaskSetExit()
Just set the flag TP.bExit in the task handle to true.

• SysTaskDestroy()
Force the task to end immediately.

• SysTaskSuspend()
Suspend a running task temporary.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 25 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• SysTaskResume()
Resume a previously suspended task.

• SysTaskEnd()
This function is for a suicide of the task itself.

• SysTaskWaitSleep()
This function lets the specified task sleep. It is enough to execute this for the currently running
task and to prohibit it for foreign ones (what is easier on most systems).

• SysTaskWaitInterval()
Let the task sleep for one interval. This is only necessary if you want to bypass the event
based scheduler. [optional]

• SysTaskGetCurrent()
Return the handle for the currently running task.

• SysTaskGetCurrentOSHandle()
Return the current OS handle. This is necessary for the exception handling.

• SysTaskSetPriority()
Change the priority of an existing task. [optional]

• SysTaskSetProcessPriority()
This function is only necessary for systems with interprocess communication. [optional]

• SysTaskGetPriority()
Get the Tasks IEC priority. [optional]

• SysTaskGetOSPriority()
Get the real priority of the task. [optional]

• SysTaskGetInfo()
Return the Task_Info structure from a task handle (usually just a cast).

• SysTaskGetContext()
Determine PC, SP and BP from the current (saved) task context.

• SysTaskCheckStack()
Hook to check the task stack. [optional]

• SysTaskGetInterval()
Get the task interval. [optional]

• SysTaskSetInterval()
Change the task interval. [optional]

• SysTaskWaitSleepUs()
Implement a precise sleep in microseconds. [optional]

The Events should have an event counter. That means that if an event is missed, the task will execute
two times directly after another. Otherwise we might miss a cycle. You need to implement the following
API:

• SysEventCreate()
Create a new event or take one from a local event pool.

• SysEventDelete()
Delete an existing event or give it back to a local event pool.

• SysEventSet()
Signal an event (used by our scheduler, so maybe also from Interrupt context).

• SysEventWait()
Wait on an event. This is obviously only called from the IEC tasks to wait for the next cycle.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 26 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.2 Add Communication Channels

3.2.1 Serial
The serial block driver is the default one, which we support with our compact runtime. So you might
already use this as a communication method.

3.2.2 UDP
Additional Components:

• CmpBlkDrvUdp

Dependencies:

• SysSocket

The SysSocket interface is based on the BSD socket interface and awaits a similar behaviour. The API
is very big. That’s why it isn’t described here in detail. Instead here are the most essential functions,
which are used from our Communication Interface (CmpBlkDrvUdp):

• SysSockSelect

• SysSockGetOption

• SysSockCreate

• SysSockClose

• SysSockSetOption

• SysSockBind

• SysSockGetHostName

• SysSockGetHostByName

• SysSockNtohl

• SysSockHtonl

• SysSockNtohs

• SysSockHtons

• SysSockSendTo

• SysSockRecvFrom

• SysSockIoctl

• SysSockInetNtoa

• SysSockInetAddr

• SysSockGetOSHandle

3.2.3 CAN
Additional Components:

• CmpBlkDrvCanClient

• CmpBlkDrvCanServer

Dependencies:

• CmpCAACanL2

• CmpCAAMemBlockMan

• CmpCAASdoClient

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 27 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• CmpCAASdoServer

• CmpCAATick

• CmpCAATickUtil

Required:

• CAN-Mini-Driver

For a basic CAN-Mini-Driver, you just need to implement the following functionality:

• Initialization:
Call CL2_CmdRegister() with a list of all CAN Layer 2 Interface functions.

• CMD_Init():
Setup your chip in this function.

• CMD_Send():
Send Data to the bus. The control about the buffer is given back to CL2 with
CL2_MsgSendAckn() within your send interrupt.

• CMD_Receive():
Read a message from the bus and write it into the passed message handle. The regular use of
this function will be asynchronous, when you call it by your own within the receive interrupt:
CL2_MsgAlloc()
CMD_Receive()
CL2_MsgPutRQueue()

3.2.4 USB
Additional Components:

• CmpBlkDrvUsb

Required:

• USB-Mini-Driver

The USB-Mini-Driver needs to provide the following API:

• OpenDevice()
Search for a specific device, with VendorID and DeviceID and open it.

• Read()
Read in Bulk mode from an opened USB device.

• Write()
Write in Bulk mode to an opened USB device.

• CloseDevice()
Close the connection to an opened USB device.

3.2.5 SHM
Additional Components:

• CmpBlkDrvShm

Dependencies:

• SysEvent

• SysSemProcess

• SysShm

This block driver can be used, if you have two different processes running on the same processor,
which should communicate with each other. Note, that you need some support for global, named
Events, Semaphores and Shared Memory segments. Those mechanisms might be already provided
from your operating system. If not, you have provide it by your own.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 28 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

For example:

If an Event, called “myevent” is created two times from two different processes, the first one will create
the event in the context of the operating system and the second one will just retrieve the already
created event.

3.3 Add other Features

3.3.1 Debugging Support
Additional Components:

• CmpAppBP

• CmpAppForce

Note, that the component CmpAppBP relies on a correct breakpoint handling in the component
SysCpuHandling. Maybe you didn’t implement this in the first shot.

The component CmpAppForce adds support to force monitored variables to a specific value. It needs
no special support from the system layer.

3.3.2 Full Trace Support
Additional Components:

• CmpTraceMgr

Dependencies:

• SysTimeRtc

Currently CODESYS supports two different kinds of traces. The default one creates a child application
and reads the trace values with the usual monitoring service. For this trace, you need no special
support in the runtime. But this one is also limited in it’s functionality. For examples: You are not able to
trace device parameters, you can’t configure a trace from an IEC application and you can’t
store/restore it on the PLC.

The full trace is enabled with the following setting in the device description:
<ts:TargetSettings>
 <ts:section name=”trace”>
 <ts:setting name=”tracemanager” type=”boolean” access=”visible”>
 <ts:value>1</ts:value>
 </ts:setting>
Then, you will need the additional component CmpTraceMgr, which is dependent on the system
component SysTimeRtc. At least, you need to implement the following function:

• SysTimeRtcGet()
Return a localized UNIX timestamp.

CODESYS Control V3 - Migration and Adaptation

 3S-Smart Software Solutions GmbH Page 29 of 29
CODESYSControlV3_Adaptation.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Change History

Version Description Editor Date

0.1 Issued based on version 3.4.1.0 IH 16.06.2010

0.2 Extended all sections and integrated comments from Max IH 25.08.2010

1.0 Release after formal review and rework MN 09.09.2010

1.1 Reference to new CODESYSControlV3_Manual corrected AH 15.10.2010

1.2 Chap. 3.2.1 added (CDS-8637) IH 21.10.2010

2.0 Release after formal review MN 22.10.2010

2.1 CDS-29303; Spelling corrections MN 17.09.2012

3.0 Release MN 03.12.2012

3.1 Chap 2.3.5: Recommended buffer sizes corrected MM 13.12.2012

4.0 Release after formal review MaH 13.12.2012

	1 Preface
	1.1 Version Control System
	1.2 Content of the Starter Package
	1.3 Reference Implementations

	2 Porting to a new Platform
	2.1 Step by Step
	2.1.1 Configure your Runtime, using the RtsConfigurator
	2.1.2 Get all necessary source files from SysTemplates
	2.1.3 Finish Configuration with RtsConfigurator
	2.1.4 Create Project to Compile
	2.1.5 Adapting all files for communication
	2.1.5.1 MainMyPlat.c
	2.1.5.2 SysComMyPlat.c
	2.1.5.3 SysTargetMyPlat.c
	2.1.5.4 SysTimeMyPlat.c
	2.1.5.5 sysdefines.h / sysspecific.h
	2.1.5.6 Gateway.cfg

	2.1.6 Test the communication
	2.1.7 Adapt all files for a first download
	2.1.7.1 MyPlat.devdesc.xml
	2.1.7.2 SysCpuHandlingMyPlat.c
	2.1.7.3 SysExceptMyPlat.c
	2.1.7.4 SysMemMyPlat.c

	2.2 Testing the communication
	2.3 Debugging
	2.3.1 Check the log messages
	2.3.2 Device doesn’t appear in the scan
	2.3.3 Unable to download but no exception
	2.3.4 Exception at download
	2.3.5 Communication Timeout after a few seconds/minutes
	2.3.6 Other Errors

	3 Adding Features to the Runtime
	3.1 Change the Scheduler
	3.1.1 Embedded Scheduler
	3.1.2 Timer Scheduler
	3.1.3 Multitasking Scheduler

	3.2 Add Communication Channels
	3.2.1 Serial
	3.2.2 UDP
	3.2.3 CAN
	3.2.4 USB
	3.2.5 SHM

	3.3 Add other Features
	3.3.1 Debugging Support
	3.3.2 Full Trace Support

