
 3S-Smart Software Solutions GmbH Page 1 of 1
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

CODESYS Control V3 Manual

Document Version 19.0

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 2 of 2
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

CONTENT

1 INTRODUCTION 11

1.1 Runtime System in the Overall System 11

1.2 Mission of the Runtime System 12

2 ARCHITECTURE 13

2.1 Overview 13

2.2 Technology: ANSI-C and C++ 14

2.3 Single Source 15

2.3.1 Compact runtime 15

2.3.1.1 Compact download format 16

2.4 Error Codes 18

2.5 Object Handles 18

2.6 Linkage 18

2.7 Component Interface Architecture 18

2.7.1 Calling convention 19

2.7.2 Export convention 19

2.7.3 Import convention 19

2.7.4 Check functions 20

2.7.5 Summary 20

2.8 M4 Mechanism 20

2.8.1 Interface description file 21

2.8.2 Dependency description file 25

2.9 Source Tree of the Runtime System 26

2.10 Files on the Target System 27

2.10.1 Boot projects 27

2.10.2 I/O manager 27

2.10.3 User management 27

2.10.4 Visualization 28

3 OVERVIEW OF THE KERNEL COMPONENTS AND MAIN FUNCTIONS 29

3.1 Start up and Shutdown 29

3.1.1 Startup 29

3.1.2 Operating mode 30

3.1.3 Shutdown 30

3.2 Component Manager 31

3.3 Application Handling 31

3.3.1 Overview 32

3.3.2 Application management 33

3.3.3 State behaviour (Start/Stop/Error) 33

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 3 of 3
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.3.4 Boot project 33

3.3.4.1 Create boot project at download implicitly 33

3.3.4.2 Create boot project after online change implicitly 33

3.3.4.3 Create boot project on demand 33

3.3.4.4 Create boot project offline 33

3.3.5 Retain variables 34

3.3.6 Debugging 34

3.3.7 Download and online change 35

3.3.7.1 Download 35

3.3.7.2 Online Change 35

3.3.8 Events related to application handling 35

3.3.9 System variables for controlling critical runtime services 36

3.3.10 Accessing project and application information 36

3.3.10.1 Project information 37

3.3.10.2 Application information 37

3.4 Watchdog Handling 37

3.4.1 Monitoring 38

3.5 IEC Task Management 38

3.5.1 Data Format of the task description 39

3.5.2 Creating IEC tasks 39

3.5.3 Creating an external event task 39

3.6 Scheduling 40

3.6.1 Single tasking 40

3.6.2 Timer scheduler 40

3.6.3 Multitasking 41

3.7 Task management 42

3.8 Configuration (Settings) 42

3.8.1 INI file backend 42

3.8.2 Embedded Backend 43

3.9 Logging 43

3.10 Hardware and Operating System Abstraction Layer (Sys-Components) 44

3.10.1 Time access (SysTime) 44

3.10.2 Serial interface (SysCom) 44

3.10.3 Exception handling (SysExcept) 44

3.10.4 File access (SysFile) 45

3.10.5 File access using flash (SysFileFlash) 45

3.10.6 Flash access (SysFlash) 45

3.10.7 Directory handling (SysDir) 45

3.10.8 Memory access 46

3.10.8.1 Heap and static memory (SysMem) 46

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 4 of 4
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.10.8.2 Physical memory access and shared memories (SysShm) 46

3.10.9 Dynamic loading module (SysModule) 46

3.10.10 Ethernet sockets (SysSocket) 46

3.10.11 Debug console outputs (SysOut) 46

3.10.12 Message queues (SysMsgQ) 46

3.10.13 Interrupt handling 46

3.10.14 PCI bus access (SysPCI) 46

3.10.15 Device port access (SysPort) 46

3.10.16 Timer handling (SysTimer) 47

3.10.17 Target information (SysTarget) 47

3.10.18 Task handling 47

3.10.18.1 Synchronization and semaphores (SysSem) 47

3.10.18.2 Operating system events (SysEvent) 47

3.10.18.3 Task handling (SysTask) 47

3.10.19 Optional system components for target visualization 47

3.10.19.1 Window handling (SysWindow) 47

3.10.19.2 Basic graphic routines (SysGraphic) 47

3.10.20 Process handling 47

3.10.20.1 Processes (SysProcess) 48

3.10.20.2 Process synchronization (SysSemProcess) 48

3.10.21 Direct Ethernet controller access (SysEthernet) 48

3.11 Memory Management 48

3.12 Events 48

3.13 Exception Handling 49

3.13.1 Structured exception handling (rts_try / rts_catch) 50

3.14 License Check 50

3.15 Online User Management 53

4 PORTINGS 54

4.1 Windows Specific Information 54

4.1.1 Windows runtime services 55

4.1.1.1 CODESYS Control Win V3 (soft real time) 55

4.1.1.2 CODESYS Gateway Service V3 55

4.1.1.3 CODESYS Service Control V3 55

4.1.1.4 Brand labeling 55

4.1.2 CODESYS Control RTE V3 (hard realtime) 56

4.1.3 CODESYS integrated runtime systems 56

4.1.3.1 CODESYS simulation 56

4.1.3.2 CODESYS HMI 56

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 5 of 5
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

4.2 Windows CE Specific Information 56

4.3 VxWorks Specific Information 57

4.3.1 Distributed clocks 58

4.3.1.1 Timer sources 58

4.3.1.2 Performance & Accuracy 58

4.3.1.3 Jitter 59

4.3.1.4 Static Memory Areas 59

4.3.2 Global object pools 59

4.4 Linux specific information 60

5 COMMUNICATION 61

5.1 Overview 61

5.1.1 Usage scenarios 62

5.2 General 63

5.3 Communication Layers 63

5.3.1 Block driver (Layer 2) 63

5.3.2 Router (Layer 3) 64

5.3.3 Channel management (Layer 4) 64

5.3.4 Application services (Layer 7) 65

5.4 Network Topology and Addressing 66

5.4.1 Topology 66

5.4.2 Addressing and routing 66

5.4.2.1 Parallel routing 67

5.4.3 Address determination 67

5.4.4 Address structure 67

5.4.4.1 Network addresses 67

5.4.4.2 Node addresses 68

5.4.4.3 Absolute and relative addresses 69

5.4.4.4 Broadcast addresses 70

5.5 Router Communication 70

5.5.1 Hop count 71

5.5.2 Router signaling 71

5.5.3 Variable maximum block length for a transmission route 71

5.5.4 Multiple router instances 72

5.6 Layer 3 Services 72

5.7 Gateway and client 72

5.8 Implementation Aids 73

5.8.1 Implementation of own block driver 73

5.8.2 Interface 73

5.8.3 Addressing 74

5.8.4 General implementation procedure 75

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 6 of 6
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

5.8.5 Synchronisation 75

5.9 Implementation of Own Communication Driver 75

5.9.1 Communication driver for the gateway 76

5.9.2 Communication driver for the client 77

5.9.2.1 Connection parameters 79

5.9.2.2 Implementation of BeginConnect 81

5.10 Standard block drivers and their network addresses 82

5.10.1 Overview 82

5.10.2 UDP block driver 82

5.10.3 Serial block driver 83

5.11 Modules 84

5.12 Client API Interfaces 84

5.12.1 Channel client (CmpChannelClient) 84

5.12.2 Gateway client (GwClient) 84

5.12.3 PLCHandler 85

6 DEVICE- / I/O CONFIGURATION 86

6.1 Graphical Configuration 86

6.2 Devices 87

6.3 Device Descriptions 87

6.3.1 Connectors 87

6.3.2 Parameters 92

6.3.3 I/O mapping 93

6.4 Device Description Files 94

6.4.1 Defining types 95

6.4.1.1 Bitfields 95

6.4.1.2 Range types 95

6.4.1.3 Array types 95

6.4.1.4 Simple structures 96

6.4.2 Defining strings for localization 96

6.4.3 Defining files and adding icons and images 97

6.4.4 Defining the device itself (identification, connectors, driver, parameters) 97

6.4.4.1 Device 98

6.4.4.2 Device identification 98

6.4.4.3 Device info 99

6.4.4.4 Driver info 100

6.4.4.4.1 Adding libraries and function blocks 101

6.4.4.5 Defining connectors 102

6.4.4.5.1 Slave with 1 connector 102

6.4.4.5.2 Master with 2 connectors 102

6.4.4.5.3 Multiple parent connectors 102

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 7 of 7
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

6.4.4.6 Defining parameters and parameter sections 103

6.4.4.7 Functional, defining child objects 107

6.4.4.8 Compatible Versions 107

6.4.5 Target description 108

6.4.5.1 Target settings 108

6.4.5.1.1 Runtime features 108

6.4.5.1.2 Memory layout 111

6.4.5.1.2.1 Some Use cases of memory layout settings 117

6.4.5.1.2.2 Child applications 120

6.4.5.1.3 Online 120

6.4.5.1.4 Task configuration 121

6.4.5.1.4.1 Application tasks 122

6.4.5.1.5 Network variables 126

6.4.5.1.6 Code generator 127

6.4.5.1.7 Device configuration 132

6.4.5.1.8 Library management 134

6.4.5.1.8.1 Placeholder Libraries 134

6.4.5.1.8.2 Placeholderlib, for replacing 3S-libraries by customer-specific libraries 135

6.4.5.1.8.3 Exclude library category 135

6.4.5.1.9 Visualization 135

6.4.5.1.10 Online Manager 141

6.4.5.1.11 Recipe manager 142

6.4.5.1.12 Symbolconfiguration 143

6.4.5.1.13 Trace 143

6.4.5.1.14 Object Type Restrictions 144

6.4.6 Custom tags 144

6.4.7 Strings 145

6.4.8 Types 145

6.5 Device administration 146

6.6 Save and Restore Changed IO Configuration Parameters 147

7 I/O DRIVERS 148

7.1 Concept 148

7.2 Main I/O Driver Interfaces 150

7.2.1 IBase 150

7.2.2 ICmpIoDrv 150

7.2.3 ICmpIoDrvParameter 158

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 8 of 8
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

7.3 Optional Interfaces 158

7.4 I/O Manager 158

7.5 Access to the I/O Configuration 158

7.6 I/O Drivers in C/C++ 159

7.7 I/O Drivers in IEC 160

7.8 Diagnostic Information 160

7.8.1 General diagnostic information bit-field 160

7.8.2 Extended diagnostic parameter 161

7.8.3 Extended diagnostic acknowledge parameter 162

7.8.4 Implementation notes 162

7.9 IO Consistency 163

7.9.1 Consistency in the IO Driver 164

7.10 External CAN Sync 165

7.10.1 CAN L2 API 165

7.10.2 Timer ISR 165

7.10.3 Motion Cycle Time 166

7.11 Byte order specific data handling in IO driver 166

7.11.1 Bits handling in BYTE/WORD/DWORD 166

7.11.2 Helper functions for I/O update 168

7.11.3 Representation of bit-fields in IO configuration 168

8 SYMBOLIC IEC VARIABLE ACCESS 170

8.1 Architecture 170

8.2 Database of Symbolic Information 171

8.3 Variable Access Interfaces 172

8.3.1 Functional interface 172

8.3.2 Online interface 172

8.4 Data Consistency 172

8.5 Behaviour at Download/Online Change 172

8.6 Usage on Small Embedded Systems 172

9 CUSTOMER ADAPTATIONS AND EXPANSIONS 174

9.1 Configuration 174

9.1.1 Link type of the runtime system 174

9.1.2 Choice of components 175

9.1.3 Static configuration of components 176

9.1.4 Dynamic configuration (CmpSettings) 176

9.1.5 Typical configurations of the CODESYS Control WinV3 runtime system 179

9.1.5.1 Embedded Runtime System 179

9.1.5.2 Timer runtime system 179

9.1.5.3 Full runtime system 180

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 9 of 9
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

9.1.5.4 Gateway runtime system 180

9.1.5.5 Visualization runtime systems (target visualization CODESYS HMI) 181

9.1.6 Create your own configuration with the RtsConfigurator 181

9.2 Implementing own components 182

9.2.1 Global include files 182

9.2.2 Include files of the components 182

9.2.2.1 Interface file 182

9.2.2.2 Dependency file 182

9.2.3 Generation of include files 183

9.2.4 Source code file 183

9.2.4.1 General interface 183

9.2.4.2 Component specific implementation 185

9.3 Implementation Notes 186

9.3.1 Error returning 186

9.3.2 Memory 186

9.3.3 Allocation of IDs 186

9.3.3.1 Vendor ID 186

9.3.3.2 Component ID 186

9.3.3.3 Interface ID 187

9.3.3.4 Class ID 187

9.3.4 Importing of functions 187

9.3.5 Calling of imported functions 187

9.3.6 Exporting of functions 187

9.3.7 Linkage with the runtime system 188

9.3.8 Order of the INIT Hooks 188

9.4 Libraries 188

9.4.1 Creating a library in CODESYS 189

9.4.2 Implementation of external POUs in the runtime system 189

9.4.2.1 Declaration in the runtime system 189

9.4.2.2 Declaration of functions 189

9.4.2.3 Declaration of function blocks 190

9.4.2.3.1 Declaration of methods 192

9.4.3 Implementation 193

9.5 Adaptations to Specific Operating Systems or Processors 194

9.6 Licensing 194

9.6.1 Derivate based licensing 194

10 CODING GUIDELINES 196

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 10 of 10
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

10.1 General 196

10.2 Naming conventions and identifier 196

10.3 Data types 198

10.4 Component interfaces and dependencies 200

10.5 Startup sequence 201

10.6 Alignment 201

10.7 Use of special macros 201

APPENDIX A: MIGRATING FROM CODESYS CONTROL VERSION 2 TO VERSION 3 202

CHANGE HISTORY 204

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 11 of 11
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

1 Introduction

A runtime system is referred to as the software, that is running on a system that controls a device or a
machine. CODESYS Control is here the product name of the runtime system of 3S-Smart Software
Solutions GmbH.

CODESYS is the product name of the complete software family of IEC 61131 programming tools.

Control stands for the runtime system to control a machine.

The runtime system CODESYS Control V3 is a completely new development of 3S. It is based on
more than 10 years experience in the automation technology and is provided for a wide range of
operating systems and processors.

In this document, the runtime system CODESYS Control Version V3 is declared in detail. With this
document we give you all basic information to start working with it and to understand the internal
mechanisms.

1.1 Runtime System in the Overall System
The runtime system is running typically in a PLC (programmable logic controller). The runtime system
is connected via a communication media to communicate with clients (CODESYS, HMO, OPC-Server,
etc.).

WARNING: For security reasons, controllers, specifically, their TCP/IP programming ports (usually UDP-Ports 1740..1743 and
TCP-Ports 1217 + 11740 or the controller specific ports) must not be accessible from the Internet or untrusted
Networks under any circumstances! In case Internet access is needed, a safe mechanism has to be used, like VPN
and password protection of the controller. When you are going to start CODESYS Control Win V3 from the systray
menu, you will get an appropriate warning in a dialog box, where you still can cancel the startup.

On the other side, the runtime system is typically connected to the IO-system (field busses, local IOs)
and/or drives of the machine that is controlled.

Figure 1. Runtime system in the overall system

CODESYS Client (HMI)

PLC
Runtime System

I/O System

Machine

I/Os

Drives

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 12 of 12
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

1.2 Mission of the Runtime System
The runtime system CODESYS Control provides the following main functions:

• Execution of the IEC application(s), that are created with CODESYS V3

• Debugging of the IEC application

• Connection to the IO-system and/or drives

• Communication with the programming tool CODESYS V3 or another client (e.g. HMI)

• Routing for communication to subordinate runtime systems

• Runtime system to runtime system communication

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 13 of 13
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

2 Architecture

The architecture of the runtime system CODESYS Control V3 based on a component oriented model.
Each logical, functional part of the runtime system is separated in one (or more) components.

Each component has a well defined interface. Via this interface, other components can have access to
this component. Because a component has a specified interface, it can be replaced by another
component that implements this interface.

Additionally a component can have a dependency to other components, if this component uses their
interfaces to operate.

Because of this component model, components can be arranged together to a complete runtime
system. This runtime system can be a very small one with less functionality or a full ranged runtime
system with all features! This depends only on the number and kind of components that are arranged
together.

Most of the components are system and processor independent and they can run on small 16-Bit up to
powerful 32-Bit systems. This is realized by a “single-source” of the runtime system.

2.1 Overview
In the following figure you can see an overview of the architecture of the runtime system.

Figure 2. Architecture overview

As you can see, the base component is the component manager. This is the central component that
must exist in every runtime system. The component manager loads and initializes all components and
enables that each component can call each other.

The second important part consists of the so called system components. These components
represent the hardware and operating system abstraction layer and hide processor and operating

Core

C
om

po
ne

nt
-M

an
ag

er

System

Sys
File

Sys
Mem

Sys
Com

Sys
Socket

Sys
Task

Sys
Event

Sys
Graphic

Communication

Level 4
ServerIdentityAddress

Assign

User Interface (optional)

Router

Blockdriver
Serial

Blockdriver
UDP

PlugInComponents GroupBase

Logger

Settings

Level 7 Server

Log-
Server

App-
Server

Device-
Server

Device

Event Mgr

Memory Mgr

IO-Driver

Application

Blockdriver
xxx OEM

component

Scheduler

IEC Task Mgr

Applications

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 14 of 14
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

system specific stuff from all other components. Via this system interface, all other components can be
written absolutely portable and independent of processor and operating system internals. Every system
component has its specific functions, e.g. file access, access to heap memory, access to a serial
RS232 interface, operating system tasks, etc. All system components are described in chapter 3.10.

The third part is the communication stack. It consists of several components to enable the
communication to clients (CODESYS, HMI, etc.) or to other runtime systems. For the last issue, a
routing mechanism is additionally provided by the communication stack.

At the bottom of the stack there are the so called block drivers. Each of them provides one single
communication medium (e.g. UDP, a TCP/IP protocol via Ethernet). The block drivers use the system
components to get a neutral access to the physical layer.

The next layer in the communication stack is the router. It provides routing to each runtime system in a
hierarchical network that consists of CODESYS Control V3 runtime systems.

Above the router, there are special service components e.g. for address assignment in the network,
identification of a runtime system or the level 4 server for the block communication.

Each service request from a client first is received by the level 7 server. Each service is assigned to a
specific group of services and then is forwarded to the special server, that was registered to the special
service group (see chapter 5 for details of the communication stack).

In the architecture overview figure shown above you can see, that the communication stack is an
integrated part of the runtime system. The gateway from version 2.x of CODESYS on version V3 is a
special derivate of the runtime system that consists only of the component-manager, some system
components and the communication stack (see chapter 5 for detailed information)!

The fourth part consists of the application management components. Here the execution, debugging
and monitoring of the IEC application(s) is done. A completely new feature in CODESYS Control V3 is
the management of several applications on ONE runtime system! This offers a lot of new application
possibilities. The PLC task handling is separated up in two components: the IEC task manager and the
scheduler. So a new scheduler algorithm can be provided only by replacing the scheduler component.

The last but not least part consists of the core components. These components provide the remaining
functionality of a runtime system. The configuration of the runtime system, the logger to log all states
and the device component for authentification reside here. The memory management and the event
handling (for runtime events) are two additional components of the core.

For OEM customers there are several ways to extend the runtime system. They can:

• Replace existing components

• Write own PlugIns (block driver, IO-driver)

• Write OEM components with external libraries, own service handling, etc.

2.2 Technology: ANSI-C and C++
All components are implemented in ANSI-C, because a C-Compiler is available for nearly all
controllers, processors and operating-systems. So ANSI-C typically is the language to write own
components. But you can write your own component in C++ with a C Interface.

But the architecture of CODESYS Control V3 has one additional big benefit: All components can
alternatively be used with C++-Interfaces in object oriented environments! This is realized as a C++
wrapper around all components.

So it is on your choice to use the runtime system with C or with C++ interfaces. If you would like to
write your own component in C++, the only thing you have to do is to compile the runtime system with
the specific define CPLUSPLUS. After this you see around your component only C++ interfaces!

How this was realized in the component interface, this is explained in detail in chapter 2.7.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 15 of 15
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

2.3 Single Source
To support the full range of runtime systems for small 16-bit controllers up to guidance systems with a
single source of the runtime system, the key is the component orientation. For all systems, a set of
base kernel components are always used. These base components are for example:

 Component manager

 CmpSettings

 CmpMemPool

 CmpLog

 And some system components

For special characteristics of the runtime system, the complete set of components is different, e.g. for
the Gateway, the CODESYS Control RTE or an Embedded Runtime.

We defined the smallest configuration of the V3 runtime system (we call it “Compact Runtime”) for very
small systems with a minimum set of functionality and some restrictions. This is declared in detail in
chapter 2.3.1.

2.3.1 Compact runtime
For the smallest configuration of the V3 runtime system (we call it “Compact Runtime”), we defined a
minimum set of functionality to run on small systems. As such a small system we defined 80 kB RAM
and 100 kB Code (Flash).

Important:
The compact runtime is no special derivate or a fork of the V3 runtime system! It is only a defined set
of components with a minimal configuration!

The restrictions of the compact runtime are:

1. Only one plc application

2. No Online Change

3. Only one online communication channel

4. No routing (CompactRuntime is endpoint of the routing line)
5. No breakpoints
6. No forcing of variables (i.e. setting a variable on the plc to a fix value)

7. Restrictions for the online monitoring:
- No pointer dereferencing
- No component access
- No stack relative monitoring (only active, if breakpoints are enabled)
- No property monitoring
- No operator monitoring

8. No 64-bit support (no LREAL, LINT data types in IEC)

9. No external system libraries

10. No file transfer feature

11. No PlcShell

12. No Trace

In the future, the plc program can be executed directly out of the flash memory to save RAM.
Additionally it is planned that an Online Change will be possible, if the plc program is executed out of
RAM (not in flash).

Important:
All restrictions are not fix! Each restriction can be broken by using different components or by changing
the configuration of the runtime system.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 16 of 16
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

In the starter-package of the runtime system you can find a template for a Compact Runtime with the
corresponding "RTS Configurator" project. This can be used as a template to create own compact
runtime systems.

2.3.1.1 Compact download format
With the version V3.4.1.0 of the runtime system, a new download format is designed especially for
embedded runtime systems to fulfill the following requirements:

 Easy to implement the download service in the runtime system

 Easy to implement storing and loading the boot project

 Ability to run the boot project directly out of flash memory

For this, a new download format is created. It consists of a contiguous binary stream with the following
different content segments:

Segment Description

CodeHeader:

 RTS_UI32 ulHeaderTag;

 RTS_UI32 ulHeaderVersion;

 RTS_UI32 ulHeaderSize;

 RTS_UI32 ulTotalSize;

 RTS_UI32 ulDeviceType;

 RTS_UI32 ulDeviceId;

 RTS_UI32 ulDeviceVersion;

 RTS_UI32 ulFlags;

 RTS_UI32 ulCompilerVersion;

 RTS_UI32 ulCodeAreaSize;

 RTS_UI16 usCodeAreaIndex;

 RTS_UI16 usCodeAreaFlags;

 RTS_UI32 ulOffsetCode;

 RTS_UI32 ulSizeCode;

 RTS_UI32 ulOffsetApplicationInfo;

 RTS_UI32 ulSizeApplicationInfo;

 RTS_UI32 ulOffsetAreaTable;

 RTS_UI32 ulSizeAreaTable;

 RTS_UI32 ulOffsetFunctionTable;

 RTS_UI32 ulSizeFunctionTable;

 RTS_UI32 ulOffsetExternalFunctionTable;

Header of the stream:

HeaderTag=0x1234ABCD

HeaderVersion=0x00000001

HeaderSize=104

Total size of header including all segments

Device type of the selected device

DeviceID of the selected device

Device version of the selected device

Download Flags

Compiler version of used CODESYS version

Code area size

Code area index

Code area flags

Offset in bytes, where the code segment begins

Size in bytes of the code segment

Offset in bytes, where the application info
segment begins

Size in bytes of the application info segment

Offset in bytes, where the area table segment
begins

Size in bytes of the area table segment

Offset in bytes, where the function table segment
begins, Here the link function are specified:
- CodeInit
- GlobalInit
- GlobalExit
- Reloc
- DownloadCode
- TargetInfo

Size in bytes of the function table segment

Offset in bytes, where the external function table
segment begins to link c functions against iec
code

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 17 of 17
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 RTS_UI32 ulSizeExternalFunctionTable;

 RTS_UI32 ulOffsetRegisterIecFunctionTable;

 RTS_UI32 ulSizeRegisterIecFunctionTable;

 RTS_UI32 ulOffsetSourceCode;

 RTS_UI32 ulSizeSourceCode;

 RTS_UI32 ulCrc;

Size in bytes of the external function table
segment

Offset in bytes, where the iec function table
segment begins to link iec functions against the
runtime system

Size in bytes of the external function table
segment

Offset in bytes, where the optional sourcecode
segment begins

Size in bytes of the optional sourcecode segment

RC32 of the complete download stream including
the header with ulCRC written to 0!

Code segment Code POUs

ApplicationInfo segment:

All names are transmitted 4 byte aligned:

 Project name (ASCII string)
 Author (ASCII string)
 Version (ASCII string)
 Description (ASCII string)
 Profile (ASCII string)
 Date of last change (DATE_AND_TIME)

Application info

Area segment:

List of AREA_INFO

Table of all used areas

Function table:

1. pfCodeInit

2. pfGlobalInit

3. pfGlobalExit

4. pfReloc

5. pfDownloadCode

6. pfTargetInfo

Function table to link to runtime

External Function table:

List of EXT_REF_INFO (4 Byte aligned for the
next entry!)

Table of external references

IEC Function table:

List of FUNCTION_INFO with following name of
the IEC function at the end (4 Byte aligned for the
next entry!)

Table of IEC functions that can be called from C

Source code segment:

Actually not used

Optional source code segment for the source
code of the used project

CRC CRC over the complete download stream

The code POUs can be relocated in CODESYS, if the address of the Data Area is fix and is known.
This is the main requirement to execute the plc program in flash.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 18 of 18
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

2.4 Error Codes
All functions in the runtime system return an error code. This error code has the type RTS_RESULT.
All error codes can be found in CmpErrors.h.

Standard error codes that can be used in each component are defined at the beginning of
CmpErrors.h. Each error code has a prefix with ERR_.

Each kernel component can specify its own error codes in CmpErrors.h.

Each OEM components can specify its own error codes in the range f 0x8000..0xFFFF.

2.5 Object Handles
All handles to data structures or objects have the type RTS_HANDLE. An invalid object can be
checked with RTS_INVALID_HANDLE. All functions that return a handle must additionally return an
error code to the caller to specify the reason of an RTS_INVALID_HANDLE.

2.6 Linkage
All components of the runtime system can be linked together in 3 different ways:

• Static Link: All components are linked together to one executable file (e.g. *.exe). This
executable file is closed, so no additional component can be added afterwards to this package.

• Dynamic Link: Each component is linked here separately to a dynamically loadable module
(e.g. *.dll or *.o). The components are loaded dynamically during startup of the runtime system.
So at every start it can be decided, which components are to be loaded and linked to the
runtime system.

• Mixed Link: This is a mixture of both issues above. The basic components are linked statically
together to one executable file, but can get extended by dynamically loaded components.

How the linkage is done can be specified with compiler flags:

• STATIC_LINK: For static linking

• MIXED_LINK: For mixed linking

• DYNAMIC_LINK (or nothing): This is the default, if none of the two defines above is set

The source code of the components is identical in all linkage models. How this is realized is described
in the next chapter.

2.7 Component Interface Architecture
The component interface of the runtime system must match the following requirements:

1. For embedded targets, all runtime system components should be linked static with direct C-
functions calls in order to have a maximum of performance.

2. For more powerful systems with an operating system, the components should be loaded
dynamically in order to have the flexibility to select components that should be used during
startup time. Here, all functions of other components must be called via function pointers that
are investigated during start up of the system.

3. For C++ runtime systems, the C++ calling conventions (name mangling, virtual function calls,
methods) should be used.

To perform all these issues, 3S has developed an own interface technology based on C-macros.

Every function call must be done not directly with a call of the C-function. You always have to use a
special CAL_ prefix for that.

Additionally the export and import of functions must be done by special EXP_ and GET_ macros.

The usage of these macros is explained in the following:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 19 of 19
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

2.7.1 Calling convention
If a component Cmp1 wants to call a function Fct1 of component Cmp2 and Cmp1 does not call the
function directly, it will have to call the function via the specific CAL_ macro:

CAL_Fct1();

The CAL_ macros can now be resolved in different ways:

Static Linking: #define CAL_Fct1 Fct1

Dynamic Linking: #define CAL_Fct1 pfFct1 // Function pointer to Fct1

C++: #define CAL_Fct1 ICmp2::Fct1

As you can see, the CAL_ macro reaches the goal to adapt the calling convention to the linkage
mechanism. On the other hand you can see that the caller does not see any difference, in which linking
environment the component is embedded.

2.7.2 Export convention
To use a function from another component, the function first must be exported by this component. This
is done with a second macro, the export macro. Therefore we created the so called EXP_ macro.
Referring to the example shown above, Cmp2 has to export its Fct1 with the following macro at a
specific moment during start up of the runtime system:

EXP_Fct1;

This macro is expanded in different environments like:

Static Linking: #define EXP_Fct1 ERR_OK

Dynamic Linking: #define EXP_Fct1 CMRegisterAPI("Fct1", (void*)Fct1, 0, 0)

C++: #define EXP_Fct1 ERR_OK

Only in case of dynamic linking, component Cmp2 has to register its function pointer of the exported
function at the component manager to use it later from other components.

2.7.3 Import convention
If a component needs to call functions from other components, it has a dependency to other
components. This issue is covered by the third macro called GET_ macro.

In the example shown above, Cmp1 has to import Fct1 with the following macro at a specific moment
during start up of the runtime system:

GET_Fct1;

This macro is expanded in different environments like:

Static Linking: #define GET_Fct1 ERR_OK

Dynamic Linking: #define GET_Fct1 CMGetAPI("Fct1", (void **)&pfFct1, 0)

C++: #define GET_Fct1 ERR_OK

Only in case of dynamic linking, component Cmp1 has to resolve the function pointer of the imported
function from the component manager to use it later.

In the case of dynamic linking you can see that there is a function pointer needed to hold the pointer to
the function. For this a second macro is needed, that declares these function pointers. It is called
USE_ macro.

In the example shown above, Cmp1 has to declare a function pointer for Fct1 with the following macro
at the beginning of its C-file:

USE_Fct1;

This macro is expanded in different environments like:

Static Linking: #define USE_Fct1

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 20 of 20
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Dynamic Linking: #define USE_Fct1 PFFCT1 pfFct1;

C++: #define USE_Fct1

2.7.4 Check functions
The last category of macros is the so called check macros. To check, if an interface function is
available, there is always the possibility to use the CHK_ macro. The macro will return 1, if the
interface functions is available and 0 if not. In your code, this macro can be used as follows:

if (CHK_Fct1)

 CAL_Fct1();

2.7.5 Summary
As you can see, the component interface is basing on special C-macros. To pursue the example
described above, the macros must be used in the two components as follows:

Cmp1.c:

 USE_Fct1;

 int ImportFunctions(void)

 {

 GET_Fct1;

 }

 int Code(void)

 {

 …

 CAL_Fct1();

 …

 }

Cmp2.c:

 int ExportFunctions(void)

 {

 EXP_Fct1;

 }

As you can see, there are a lot of macros necessary to realize the component interface mechanism.
To simplify this, we automate this process with the GNU m4-Compiler. This is declared in the next
chapter.

2.8 M4 Mechanism
To reduce the effort for the generation of the component interface macros, we use the GNU M4 pre-
processor. Therefore, two different types of description files must be used:

• *Itf.m4: The interface description file contains all information about an interface, that a
component provides

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 21 of 21
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• *Dep.m4: The dependency file contains all dependencies on other components

From these description files (interface and dependency) the GNU M4 macro pre-processor generates
the associated header files, using the three control files Export.m4, Implementation.m4 and Util.m4.

For generating the dependency header file the macro pre-processor accesses all interfaces used. No
further file is required for generating the interface header file.

The diagram below illustrates the generation of the header files for component CmpX1, where this
component wants to import functions from component CmpX2.

2.8.1 Interface description file
The interface description file must contain an entry for each function to be exported from the
component. Each function must be defined with one of a set of specific keywords. The keywords
always have the same structure:
<KEYWORD>(`<Return type>',`{CDECL|STDCALL}', `<Function name>',
 `(<Signature>)' [`<LinkToIECApp>{1|0}’])

Example for the function Fct1 with prototype int Fct1(int a):
DEF_API(`int',`CDECL',`Fct1',`(int a)',1,0)

An interface function can be specified with one of the following keywords:

Keyword Description
DEF_API C-functions (can be used for external libraries too)

In the runtime system we use the convention that a lower case
function name indicates that this function can be called from the IEC
application. With the lower case we separate C-functions that can be
used by other components from the functions that can be used by the
IEC program.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 22 of 22
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Keyword Description
DEF_STATIC_API Static C-functions

These interface functions cannot be used in the static linkage case.
These functions are static and can only be used with dynamic linking
and functions pointers.

DEF_ITF_API Singleton classes

Most of the classes in the runtime system are singleton classes. They
implement one interface and always one instance is available.

DEF_STATICITF_API Static class methods of Singleton classes

This is only relevant for C++ implementations. This interface is
implemented static, that no instance pointer is required to call this
interface function.

DEF_CREATEITF_API Instantiable class constructors

This is used for interfaces that are defined once and are implemented
only by one class in one component (e.g. all System classes like
SysFile)! The return value of a function, that is specified by this
keyword, is the handle to the object (class instance)

DEF_HANDLEITF_API Instantiable class methods

This is used for interfaces that are defined once and are implemented
only by one class in one component! The first parameter of a function,
that is specified by this keyword, is the handle to the object (class
instance)

DEF_CREATECLASSITF_API Instantiable class constructors

This is used for interfaces that are defined once and can be
implemented by more then one class in several components! One
example is the CmpIoDrv-Interface that can be implemented by more
then one I/O-driver. The return value of a function, that is specified by
this keyword, is the handle to the object (class instance)

DEF_CLASSITF_API Instantiable class methods

This is used for interfaces that are defined once and can be
implemented by more then one class in several components! One
example is the CmpIoDrv-Interface that can be implemented by more
then one I/O-driver. The first parameter of a function, that is specified
by this keyword, is the handle to the object (class instance)

All keywords are expanded by the m4-compile process in the corresponding Itf-header files.

The optional parameter LinkToIECApp indicates whether this function can be linked from an IEC
application. If the parameter is not defined, ‘0’ (i.e. not linkable to IEC applications) will be assumed.
The above examples are also included in file CmpTemplateItf.m4.

From each entry a function prototype, the definition of the function pointer, and the macros USE_xxx,
EXT_xxx, GET_xxx, CAL_xxx, EXP_xxx and CHK_xxx are generated so that the functions can be
used in a second module. In addition the signature checksum required by the component manager for
registration and import of the function is calculated.

• for declaration of the function pointer (USE_...)

• for declaration of external function pointers (EXT_...)

• for importing (GET_...)

• for calling the function (CAL_...)

• for checking the function pointer (CHK_...)

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 23 of 23
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• for exporting (EXP_...).

The exported component functions should be defined in a uniform manner such that the return value
always is an error code. If the function is to return variable values, parameters with pointer to the return
value must be used.

The macro pairs are distinguished by the following compiler flags:

1. STATIC_LINK: If the components are linked statically, STATIC_LINK must be specified in the
preprocessor options.

2. MIXED_LINK: Must be specified if the components are linked statically with the option of
expansion through dynamic reloading of further components.

3. CPLUSPLUS: Must be specified if the runtime system is to be compiled in C++.

4. DEFAULT: If no compiler flag is specified, the components later will be reloaded as modules.

5. <component name>_NOTIMPLEMENTED: Can be used to completely deactivate the interface
of a component.

6. <function>_NOTIMPLEMENTED: Can be used to deactivate individual functions of a
component.

As an example the function CmpTemplateOpen of component CmpTemplate is examined:

The function declaration can be taken over from the header file into the source code file, where it is
also implemented:
RTS_HANDLE CDECL CmpTemplateOpen(char *pszTemplate, RTS_RESULT *pResult);

Function pointer to this function:
typedef RTS_HANDLE (CDECL * PFCMPTEMPLATEOPEN) (char *pszTemplate,
RTS_RESULT *pResult);

Macro definition if the whole component or this function is to be deactivated:
#if defined(CMPTEMPLATE_NOTIMPLEMENTED) ||
defined(CMPTEMPLATEOPEN_NOTIMPLEMENTED)

 #define USE_CmpTemplateOpen

 #define EXT_CmpTemplateOpen

 #define GET_CmpTemplateOpen ERR_NOTIMPLEMENTED

 #define CAL_CmpTemplateOpen(p0,p1) (RTS_HANDLE)ERR_FAILED

 #define CHK_CmpTemplateOpen FALSE

 #define EXP_CmpTemplateOpen ERR_OK

Macro definition for the statically linked runtime system:
#elif defined(STATIC_LINK)

In the statically linked runtime system no function pointers are required.
 #define USE_CmpTemplateOpen

The same applies to the external function pointer.
 #define EXT_CmpTemplateOpen

In the statically linked runtime system the function pointer import is minimal.
 #define GET_CmpTemplateOpen ERR_OK

The call is made directly as a function call.
 #define CAL_CmpTemplateOpen CmpTemplateOpen

In the statically linked case the function pointer is always present.
 #define CHK_CmpTemplateOpen TRUE

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 24 of 24
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

The function pointer does not have to be exported.
 #define EXP_CmpTemplateOpen ERR_OK

Macro definition for the runtime system with mixed links:
#elif defined(MIXED_LINK)

The runtime system with mixed links contains elements of the statically and the dynamically linked
runtime system. The core components are statically linked, while optional modules can be reloaded.

The core is statically linked, which means that no pointers are required.
#define USE_CmpTemplateOpen

 #define EXT_CmpTemplateOpen

The core is statically linked, which means that no function pointers have to be imported.
 #define GET_CmpTemplateOpen ERR_OK

The call to the function can also be replaced with a direct function call.
 #define CAL_CmpTemplateOpen CmpTemplateOpen

Not required either
 #define CHK_CmpTemplateOpen TRUE

In order to enable access to the functions of other components for dynamically linked optional
components, the component manager must be notified of the function pointer.

#define EXP_CmpTemplateOpen s_pfRegisterAPI("CmpTemplateOpen",
(void*)CmpTemplateOpen, 0, 0)

Definition for the C++ runtime system (statically linked):
#elif defined(CPLUSPLUS)

No function pointers are required since the C++ runtime system is also statically linked:
 #define USE_CmpTemplateOpen
 #define EXT_CmpTemplateOpen

The import of function pointers is also minimal
 #define GET_CmpTemplateOpen ERR_OK

In the C++ runtime system function calls correspond to method calls.
#define CAL_CmpTemplateOpen
((ICmpTemplate*)s_pfCreateInstance(CLASSID_CCmpTemplate, NULL))-
>ICmpTemplateOpen

Before the call the existence of an object for the class must be verified:
 #define CHK_CmpTemplateOpen (s_pfCreateInstance != NULL)

The export of functions is also minimal
 #define EXP_CmpTemplateOpen ERR_OK

Definition for the dynamically linked runtime system:
#else /* DYNAMIC_LINK */

If a function is to be used, the function pointer must be declared with the USE macro:
 #define USE_CmpTemplateOpen PFCMPTEMPLATEOPEN pfCmpTemplateOpen;

Declaration of an external function pointer
#define EXT_CmpTemplateOpen extern PFCMPTEMPLATEOPEN
pfCmpTemplateOpen;

The function pointer fetches the GET macro via the GetApi function of the component manager:
 #define GET_CmpTemplateOpen s_pfGetAPI("CmpTemplateOpen",

(void **)&pfCmpTemplateOpen, 0)

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 25 of 25
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

A function pointer is used for the call:
 #define CAL_CmpTemplateOpen pfCmpTemplateOpen

Before each call the validity of the function pointer should be verified.
 #define CHK_CmpTemplateOpen (pfCmpTemplateOpen != NULL)

During export a function pointer is registered in the component manager.
#define EXP_CmpTemplateOpen s_pfRegisterAPI("CmpTemplateOpen",
(void*)CmpTemplateOpen, 0, 0)

#endif

2.8.2 Dependency description file
The file starts with a comment containing a textual description of the component. The tags defined
above should be used.

1 SET_COMPONENT_NAME(`<name of component’).
Sets the name for this component

2 COMPONENT_SOURCES(`<source file’)
Specifies the source file for this component.

• IMPLEMENT_ITF(`<relative path to interface file>.m4’).
This entry specifies which interface this component implements. This entry is used to generate
an #include statement for the associated header file and the EXPORT_STMT macro, which
should be called in the ExportFunctions function and which registers the interface functions in
the component manager.

• USE_ITF(`<relative path to interface file>.m4’).
These entries specify interfaces from which functions are imported. They are mainly used to
generate #include statements for the associated header files. The component manager also
needs this information for checking the signatures of the imported functions.

• REQUIRED_IMPORTS(`<function1>', `<function2>', ...)
This is used to generate the IMPORT_STMT macro. The component must call this macro in
the ImportFunctions function. The specified functions are then imported by the component
manager. If an error occurs an appropriate message is written into the log, and
ExportFunctions is terminated with an error.

• OPTIONAL_IMPORTS(`<function3>', ...)
Specifies non-critical functions for import, i.e. the component is executable without these
functions. Special assert macros (see below) can be used to restrict this function.
This macro also extends IMPORT_STMT with associated instructions.

• ASSERT_ONE_OF(<A>,,<C>, ...)
At least one of the specified functions must exist.

CmpTemplateDep.m4 is illustrated as an example below:

Component name
SET_COMPONENT_NAME(`CmpTemplate')

Source file for the component.
COMPONENT_SOURCES(`CmpTemplate.c')

Interfaces implemented by this component.
IMPLEMENT_ITF(`CmpTemplateItf.m4',`CmpEventCallbackItf.m4')

Interfaces from which this component imports functions.
USE_ITF(`CmpLogItf.m4')

USE_ITF(`CmpSrvItf.m4')

USE_ITF(`CmpBinTagUtilItf.m4')

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 26 of 26
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

USE_ITF(`SysTaskItf.m4')

USE_ITF(`SysMemItf.m4')

USE_ITF(`CmpSettingsItf.m4')

USE_ITF(`CmpAppItf.m4')

USE_ITF(`CmpEventMgrItf.m4')

Functions that must be imported.
REQUIRED_IMPORTS(

LogAdd,

ServerRegisterServiceHandler,

. . .

EventUnregisterCallback,

EventPost,

EventPostByEvent)

Functions that can be imported optionally.
OPTIONAL_IMPORTS(

SysMemIsValidPointer)

2.9 Source Tree of the Runtime System
The source tree of the runtime system is built as followed:

Figure 3: Source tree of the runtime system

All m4-Definitions and the m4 pre-processor you can find in the $\BuidlUtils directory.

The base directory is $\Components. Here you can find all Itf.h files in the root.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 27 of 27
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Under $\Components, you can find a directory for each kernel component, like
$\Components\CmpApp. In each directory you can find all c-, cpp-, Dep.h and Dep.m4 files for every
kernel component.

One special directory is the directory $\Components\All. This directory contains all kernel components
and header files in flat order in single directory. This can be used on systems that have problems to
compile and link the source files split in several directories. This simplifies the generation of make files
too.

Under the directory $\Platforms you can find all operating system and processor adaptation
components. The components are separated by the operating system. All native adaptations without
an operating system, you can find under $\Platforms\Native.

Each adaptation part is separated into the directories $\Platforms\<OS>\Sys with the system
implementations, $\Platforms\<OS>\Projects with the make files and project files and
$\Platforms\<OS>\bin with the optional binaries that are shipped with the runtime system.

2.10 Files on the Target System
Which files are necessary or created on your target file system, hardly depends on the type of runtime
and the extended which you are using. At the absolute minimum, you will use an embedded runtime
system, with a static configuration, no extended features and a flash file system for your boot projects.
So you won't need any file system at all. But contrary to this, the following chapter will describe a full
runtime system with all features.

2.10.1 Boot projects
By default, boot projects are saved as files, named <application>.app on the target file system. On
embedded runtime systems they can be also saved in flash with the runtime component SysFileFlash.

If we are using a target file system, the runtime system will generate the following two files when a boot
project is created:

 - <application>.app

 This file contains the application code and data.

 - <application>.crc

This file contains a CRC value of <application>.app which is verified at boot time.

With the setting [CmpApp]->RetainType.Applications=OnPowerfail, the target will save the "retain" and
"retain persistent" data to the file system. For this to work, the target needs to be shut down correctly.
On power fail, this can be done with a big enough condensator, which can buffer the target long
enough to shut it down. In this case the following file is generated for every application on shutdown:

 - <application>.ret

This file contains the complete retain data segment of the corresponding application, and is therefore
as big as the retain-segment is configured in the corresponding device description.

2.10.2 I/O manager
The I/O manager forwards all configuration-, read- and write-requests to the attached device drivers.
Please refer to chapter 7 for a more detailed description.

Every Parameter which is set in the I/O Configuration is saved to the file "IoConfig.par". Those values
are then restored at the next power up from this file.

2.10.3 User management
The User management of the CODESYS Runtime encapsulates the whole rights- and user
management into the component CmpUserDB. This component can be implemented by the OEM

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 28 of 28
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

customer himself to match his special requirements. But there is also a fully complete user database
included in the runtime.

This uUser database saves it's user and rights tables in simple CSV files on the target file system:

 - UserMgmtDB.csv

This file contains all users and groups, which are downloaded by the CODESYS programming system.

 - UserMgmtRightsDB.csv

The content of this file is downloaded from the CODESYS programming system, too. It contains all
configured user rights for the different files and devices.

2.10.4 Visualization
If the target visualization is running in a different process as the runtime system, it needs a way to
exchange the bitmap pool between the two processes. The bitmap pool consists of IDs, associated
with image file names on the file system. This means, that when you are using a target visualization
with images on your target, you will get also the following file, beside all the necessary image files:

 - IPCBitmapPool.cfg

This file is used to share an image pool between the two processes of the target visualization and the
soft PLC.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 29 of 29
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3 Overview of the Kernel Components and Main Functions

As described in the previous chapter, the runtime system V3 consists of single components that can be
arranged and configured for different targets to reach every set of features.

All components can be assigned to one of the following categories:

1. Component-Manager: This is the central component that must always be part of a runtime
system.

2. System-Components: Adaptation to the operating system and the processor

3. Communication-Stack: The component realizes the complete communication stack.

4. Application-Management: The component realizes the handling and management of the PLC
applications and the PLC tasks.

5. Core: These components are further components of the core of the runtime system.

6. Optional components: Optional components can be integrated optionally in the runtime
system. The usage depends on the target conditions or the feature set that should be reached.
For example the target visualization components refer to this category.

In this chapter in the following the main components and their functionality is described in detail.

3.1 Start up and Shutdown
The startup of the runtime system is executed in a strong layer based way in order to avoid that a
component calls another component that is not initialized.

A defined shutdown is typically not possible on embedded targets. The power is switched off there and
the runtime system has no time to make a defined shutdown. But on systems with e.g. an UPS a
defined shutdown is possible. For these cases, the runtime systems make a defined and orderly
shutdown.

3.1.1 Startup
The startup is done in the following main steps:

1. Basic settings of the runtime system are verified.

2. Components get loaded and initialized.

3. Boot project gets loaded, IEC tasks get created, application(s) get(s) started.

4. Communication server gets started and corresponding tasks get created.

See in the following a more detailed description of the particular steps:

1. The basic runtime system settings are checked (data types, byte order setting, etc.).
2. The component manager loads all so-called system components. The system components are

components that are always loaded and initialized before all other components are loaded. For
example the logger component for logging all start up events is such a system component.

3. The ComponentEntry() routine is called by every system component in order to link all components
with the component manager.

4. The system components will be called to export their interface functions and to import the needed
interface functions.

5. The component manager loads all other components (in the static linkage case, nothing must be
done; in the dynamic linkage case, the components are loaded dynamically).

6. The ComponentEntry() routine is called by every component in order to link all components with
the component manager.

7. The other components will be called to export their interface functions and to import the needed
interface functions.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 30 of 30
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

8. Initialization:

8.1. The initialization of the system components is done with the hook CH_INIT_SYSTEM. In this
hook, all systems components do their init code.

8.2. The initialization of all other components is done with the hook CH_INIT. Here all local
variables should be initialized.

8.3. The third level of initialization is done with the hook CH_INIT_DONE. In this hook, you can
use all interfaces to other components! You can expect here, that all other components are
initialized and can be used.

8.4. The fourth level of initialization is done with the hook CH_INIT_TASKS. Here all active parts
can be started. Typically here the boot project is loaded and the PLC tasks are created.

8.5. The last level of initialization is done with the hook CH_INIT_COMM. Here all level 7 servers
are started to open the communication to the other systems.

After the last hook (CH_INIT_COMM), the runtime system is completely initialized and started.

3.1.2 Operating mode
After the startup the runtime system goes into the operating mode. This mode is done with a cyclic call
of the hook CH_COMM_CYCLE. This hook is called in the idle and main loop of the runtime system. In
this hook every component can do some background jobs.

In a single tasking system the hook is the only position where all jobs are done, like communication,
PLC task execution, etc.

The cycle time of the CH_COMM_CYCLE hook cannot be predicted. It belongs on the jobs that are
done in all components. So try to minimize the jobs that are done in this hook to avoid an overloaded
system!

3.1.3 Shutdown
An orderly shutdown of the runtime system is only possible on targets with an UPS or with a defined
shutdown. The shutdown is done by the following steps, which basically are the same as performed
during startup but in reverse order:

1. Deinitialization:

1.1. The first level of deinitialization is done in the hook CH_EXIT_COMM. Here all level 7 servers
should close their communication channels and the server tasks.

1.2. The second level of deinitialization is done in the hook CH_EXIT_TASKS. Here all active
tasks should be deleted.

1.3. The third level of deinitialization is done in the hook CH_PRE_EXIT. In the prepare exit hook,
all components should unregister from other components to dismiss the dependency to other
components.

1.4. The fourth level of deinitialization is done in the hook CH_ EXIT. Here all local resources can
be released and the deinitialization of all components can be done.

1.5. At least, the hook CH_EXIT_SYSTEM is called to deinitialize all system components.

2. After the deinitialization, the components (except the system components) are unloaded.

3. At least the system components are unloaded.

After the unloading of the system components the runtime system is completely down and released.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 31 of 31
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.2 Component Manager
The component manager is the central component of the runtime system. It has the following job:

1. Loading components statically or dynamically during startup sequence

2. Initializing all components by calling the ComponentEntry() routines

3. Calling the ImportFunctions() routine for each component and hold a list of all API interface
functions that are registered by the ImportFunctions().

4. Calling the ExportFunctions()routine for each component and Provides all interface API
functions

5. Calling the CH_ hooks of all components in the right manner of start up and shutdown and in
the operating mode.

The component manager can be started by the main module with the CMInit() function. If this function
returns with no error, the runtime system is completely started.

The component manager can be shutdown by the main module with the CMExit() function. If this
function returns with no error, the runtime system is completely released and shutdown.

In the operating mode, the main module can call the CMCallHook() routine like:
 CMCallHook(CH_COMM_CYCLE, 0, 0, FALSE);

In this hook, the component manager calls the HookFunction() routines of all loaded components.

3.3 Application Handling

The CODESYS VV3 runtime system is to be able to handle several applications. Each of these
applications can be loaded and run independently of each other.

Each application defines one or more tasks. The tasks are processed in accordance with their
properties (event-driven, time-driven, free running or driven by external events).

The tasks should behave pre-emptively if a multitasking operating system is available. The tasks for all
applications are managed in a common task pool.

The time control of these tasks can either be carried out by the operating system or by the runtime
system's scheduler. This depends, for instance, on whether the operating system is capable of calling
tasks cyclically with high precision.

Event-driven tasks should be run promptly and in direct response to the occurrence of the trigger; it
must not be necessary to poll them cyclically. The event may be set as edge-driven or level-driven.

Two different basic scheduling procedures must be possible:

• Cyclic processing is managed by the operating system; time-slicing for freewheeling tasks is
handled by the scheduler of the runtime system, as is the runtime monitoring task (watchdog),
and possibly also the time-slicing.

• Cyclic processing and time-slicing are carried out by the runtime system scheduler. A version
is also to be possible here in which only one task is active at a time (one task scheduling).

It must be possible optionally to select a variety of time-slicing procedures:

• External time-slicing for all tasks. Time-slicing is managed by another task outside the runtime
system.

• Internal time-slicing:
A slice for all the IEC tasks alternates with a slice for the rest of the system. The available
execution time can in turn be assigned in time-slices to the IEC tasks.

Tasks with the same priority are handled in a round robin procedure. This means that each task gets
assigned a time-slice and is activated during that time-slice. Once the time-slice has elapsed, the next
task in the list will be activated. In this case, the length of a time-slice is always the schedule interval.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 32 of 32
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Watchdog handling for cyclic tasks is carried out by the runtime system scheduler. In this case, the
watchdog time and the CPU usage of all the IEC tasks must be taken into account. The hardware
watchdog is also managed by the scheduler.

The exception handling system must provide a defined response on all exceptions that might occur
(DivByZero, Access Violation, InvalidOpcode, etc.). When an exception occurs, the PLC is halted and
the call stack is determined (including in the case of an endless loop). An entry is also created in the
logger at this point.

As an option, a callback can be appended in order to provide more accurate control of the behaviour
(abort or continue).

3.3.1 Overview

Figure 4: Overview

Figure 1 shows the general structure of the individual units. The four primary units of application
management, task management, exception handling and the scheduler can be seen.

Application management contains all the application code and the data for all the applications, as well
as the current status of each application. Each application is uniquely identified here with a name and
an ID.

When an application is loaded, the application management generates the relevant IEC tasks in the
task management. All the tasks from all the applications run there together.

The exception handling system is used by the task management. This has all the information needed
(task, application, task context) to determine the call hierarchy through the exception component. The
exception component is specific to the operating system and processor.

The scheduler carries out time control, the optional time-slicing and the watchdog management.

The advantage of this structure is its modularity. It is possible, for instance, to introduce a new
scheduling procedure by exchanging the scheduler, without having to change the other components.
This allows different schedulers having different features to be implemented and optionally included.
This makes maintenance a good deal easier and solves one of the biggest problems of the former
monolithic scheduler.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 33 of 33
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.3.2 Application management
The application management system handles the application services to and from the programming
system and the management data for all the applications, together with the current state of all the
applications (Start, Stop, Reset, Exception).

The application component implements the application management precisely. It also receives
services that concern an application (Login/Logout, Create/Delete, Download, Start, Stop, Reset, etc.).
This involves support for a number of applications running at the same time. The component therefore
registers a callback function with the server for online services of the SG_APPLICATION group.

Each application can define one or more memory areas for user code and user data. The content is
then managed by the programming system.

3.3.3 State behaviour (Start/Stop/Error)
The Start, Stop and Reset commands each operate on one application. A program can be started if it
has been loaded and an associated application is present.

If an application has generated an exception, the application is going into Stop state. The application
can then be started directly! It must be done a reset first!

3.3.4 Boot project
Once the runtime system has been initialized, an attempt is made to load the boot project. Each
application has its own boot project.

The format of the boot project corresponds exactly to the download format. The same functions are
therefore called to load the boot project as to download it. The content of the download message will
be written into a file. This file is then available as boot project.

There are three times at which the boot project may be created:

• optionally immediately after download

• while running, when requested by the user (after online change, too!)

• Offline
These three different mechanisms to create a boot project are described below. The event indicating a
successful creation is EVT_CreateBootprojectDone.

3.3.4.1 Create boot project at download implicitly
A boot project is automatically generated with the download of an application.

The CodeGUID and DataGUID are transmitted at the beginning of the download service. This is
needed to avoid the repositioning on flash file systems to the beginning of the file to store these
GUIDs.

3.3.4.2 Create boot project after online change implicitly
A boot project is automatically generated after the online change of an application. Here only a
description of the code needed for the boot project is transferred to the target. So no complete transfer
of the code is needed.

3.3.4.3 Create boot project on demand
A boot project can be created in online mode on demand via command “Create boot project for
<application>”, which per default is available in the Online menu in CODESYS.

Not the complete boot project is transmitted in this case, but only a description of the used POUs of the
application that is actually running on the target!

3.3.4.4 Create boot project offline
In offline mode the same command as described in chapter 3.3.4.2 (“Create boot project for
<application>”) can be used to create a boot project. The boot project can be stored as a file *.app and
be loaded via file transfer to the runtime system. The user will be asked whether a possibly already

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 34 of 34
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

available compile info should be overwritten. This should be done, if the intension is to load the boot
project via an external tool to the PLC (because then no further download is necessary), because: In
this case the compile info of a previous download would not match to the new boot project.

Don’t forget to add this boot project to the configuration file of the runtime system (e.g.
CODESYSControl.cfg). The following entry is needed:

[CmpApp]
Application.x=<Application name>.app

X stand here for an index, starting with 1.

3.3.5 Retain variables
Retained runtime system data (e.g. PLC variables) retain their value even when the controller is
restarted. Two different storage procedures are distinguished here:

1. storage in static memory (e.g. SRAM)

2. storing the retain data in a non-volatile storage medium (such as Flash memory or hard disk)
when the controller is shutdown. The data is held in RAM at runtime.

The latter procedure can only be used if it can be guaranteed that, when the controller is switched off,
the power supply will remain on for a certain time in order to store the retain data (e.g. by means of a
UPS1

The management of these storage areas for retained data is located in the CmpRetain component.

 or battery).

This also contains the management of the static memory that assigns individually requested areas to
the retain memory (e.g. one area for a PLC device application and an area for a PLC application).

Note the possibility of using SRAMemory, already mapped by another component, for retains: By
setting “Retain.SRAM.AddressMapped” in section [CmpRetain] a retain area is set to the specified
address without mapping this area before:

Example: [CmpRetain]
Retain.SRAM.AddressMapped=0xABCD1234

Regard in this context that the following setting must always be specified to allow retains in SRAM:

[CmpApp]
RetainType.Applications=InSRAM

ATTENTION: If you use the mechanism to store retain variables in SRAM, you have to configure 24
bytes less memory for the application in the target description than is physically available! These bytes
are reserved at the beginning of each retain memory segment to store the data GUID of the
corresponding application into the SRAM, in order to check integrity after the application has been
loaded! This is necessary, because an SRAM can be moved from one controller to another and so it
must be checked if the data content matches with he assigned application.

Note: Regard further settings concerning retains in the device description: chap. 6.4.5.1.2, Fehler! Verweisquelle konnte
nicht gefunden werden..

3.3.6 Debugging
If a breakpoint is set in CODESYS, the original code at the breakpoint position will be stored and a
jump will be patched at this position on over this code. This has some advantages:

• no context switch necessary like on interrupt breakpoints

• no interrupt handling necessary, so it is more easy

• can be implemented on every controller

1 UPS: Uninterruptible Power Supply

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 35 of 35
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

To step over a breakpoint the original code is restored before the step and then the original code is
executed until the next breakpoint was reached.

In CODESYS V3 conditional breakpoints can be set, e.g. to specify the number of hit counts until the
breakpoint is reached.

3.3.7 Download and online change
Downloading an application overwrites the application with the same name on the runtime system.

At Online Change, only the changed program units will be downloaded to the runtime system. These
changed POUs will be downloaded in the same code as the remaining POUs, so no special
reorganization is necessary with copying remaining POUs from the old to the new buffer.

After that, the copy code will be executed and the new code will be integrated in the still running
application without stopping.

ATTENTION: If you make many Online Changes with increasing POUs, a fragmentation of the code
area can occur, so that an Online Change is no more possible! After that only a reboot solves this
problem.

3.3.7.1 Download
The following steps are processed during an application download:

1. Check whether an application with the same name is already available on the controller:

- If an application with the same name exists already, this will be terminated (IEC tasks are
deleted, breakpoints and force lists are released, areas are deallocated (except
PERSISTENT area!!!)). Then it will be replaced by the new one.

- If an application with the same name does not yet exist: The new application will be created.
2. Area(s) are created. Application gets initialized and IEC tasks get created.

Events:
EVT_PrepareDownload
EVT_DownloadDone

3.3.7.2 Online Change
1. Modified POUs will be transferred to the controller.

2. Blanking interval is searched (Time at which no IEC tasks are active any longer).

3. Within the blanking interval the CopyCode gets executed and the modified code gets activated.

4. POUs which are no longer used or which are obsolete or removed will be marked in the area as
“deleted”, but will leave gaps. These gaps will be used by the next online change, but a segment
fragmentation might result.

Events:
EVT_PrepareOnlineChange
EVT_OnlineChangeDone

3.3.8 Events related to application handling
The events listed are members of the event class EVTCLASS_INFO that is represented by the high
word of the event Id.

Event Description Event Id

EVT_PrepareOnlineChange Sent before the online change of the specified
application will be executed

7

EVT_OnlineChangeDone Sent after an online change of the specified
application has been executed

8

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 36 of 36
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Event Description Event Id

EVT_PrepareDownload Sent before the specified application will be
downloaded

9

EVT_DownloadDone Sent after the specified application has been
downloaded

10

EVT_CreateBootprojectDone Sent after a boot project of an application has been
created successfully

16

EVT_LoadBootprojectDone Sent after a boot project of an application has been
loaded successfully

17

EVT_DenyLoadBootproject Sent to deny the loading of a boot project of an
application.

18

EVT_PrepareLoadBootproject Sent before a boot project of an application will be
loaded

19

EVT_DenyStartBootproject Sent to deny the starting of a boot project of an
application

20

EVT_PrepareStartBootproject Sent before a boot project of an application will be
started

21

EVT_StartBootprojectDone Sent after a boot project of an application has been
started

22

EVT_DenyStart Sent to deny the starting of an application 23

EVT_DenyStop Sent to deny the stopping of an application 24

EVT_AllBootprojectsLoaded Sent after all boot projects have been loaded 25

3.3.9 System variables for controlling critical runtime services
Certain commands from the programming system concerning application services on the RTS might
be dangerous in a critical condition of the machine (e.g. stop application, set a breakpoint, online
change or reset). They can be disabled/enabled by using the following system variables in the
application program; they are properties of the "PlcOperationControl" module (component
manager.library):

- xDisableApplicationOnlineChange
- xDisableApplicationDownload
- xDisableApplicationStop
- xDisableApplicationBP
- xDisableApplicationWrite (disabled via PLCHandler/IecVarAccess too!)
- xDisableApplicationForce
- xDisableApplicationReset
- xDisableAll

By default these variables are FALSE. By setting them to TRUE the corresponding runtime service
gets disabled. This means it will be rejected and a message box will inform the user correspondingly.

Example:
PlcOperationControlInstance.xDIsableApplicationStop := TRUE; //disables stopping the application

Note: The use of these variables might be completely suppressed by the following entry in the RTS cfg-file:
[ComponentManager]
DisablingOperations=1

3.3.10 Accessing project and application information
In CODESYS it is possible to specify information about a project and its applications. These entries
can be accessed in the runtime system.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 37 of 37
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.3.10.1 Project information
In the project information dialog, you can specify the following entries:

 Company

 Title

 Version

 Author

 Description

These information can be extended by own entries of the type, text, number, bool and version. To
make these information available in the runtime system, in the dialog there is a check box
“Automatically generate POUs for property access”. If you enable this check box, a set of access
functions is generated in the POU pool, so you can access this information out of the plc program.

Additionally, these access functions are available in the runtime system at the next download. In the
runtime system you can use the API function AppGetProjectInformation() to get default information. To
use the extended information, you can use the property access functions AppGetBooleanProperty,
AppGetTextProperty, AppGetNumberProperty or AppGetVersionProperty (see [1] for details).

3.3.10.2 Application information
The information about an application can be specified in the property page of an application. Here the
following entries are possible:

 Project name

 Author

 Version

 Description

 Used CODESYS Profile

 Date of last change

The entries are not extendable by the user. This information will always be downloaded to the runtime
system. In the runtime system you can access this information be the API function
AppGetApplicationInfo().

3.4 Watchdog Handling
All IEC-tasks of an application can be supervised by the runtime system to avoid cycle time overruns.
The watchdog function can be enabled and configured in the task configuration of the PLC application.
The task will be terminated with error status ("Exception"), when the currently set watchdog “Time” gets
exceeded, whereby the currently set “Sensitivity” is included. Two cases are possible:

1. Contiguous time overruns; the following is true:

Sensitivity Exception in cycle …

0,1 1

2 2

… …

n n

2. Single time overrun: Exception if the cycle time for the current cycle is greater than (Time *
Sensitivity). Example: Time=t#10ms, Sensitivity=5 -> Exception as soon as the task (once)
runs longer than 50ms. This serves to detect endless loops in the first cycle.

If the watchdog expires, the outputs are reset to its default values, if in the device dialog of the PLC
application the entry “IO update while in stop” and “set outputs to default values” is specified.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 38 of 38
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

By use of the library function in CmpIecTask.library a watchdog may be suspended for particular PLC cycles; this
may be helpful for cycles requiring an extra amount of time due to initialization processes.

Having declared an appropriate variable of type RTS_IEC_HANDLE to handle the task
hIecTask : RTS_IEC_HANDLE;

deactivating and subsequent reactivating of the watchdog can be realized with help of the interface functions:
hIecTask := IecTaskGetCurrent(0);

IecTaskDisableWatchdog(hIecTask);

... // Code that is protected against watchdog

IecTaskEnableWatchdog(hIecTask);

3.4.1 Monitoring
The monitoring of the IEC variables is always done task-inconsistently. This is done because here no
influence of the IEC tasks on the runtime can be guaranteed.

But in the future there will be an option to read IEC variables task-consistently.

3.5 IEC Task Management
The IEC task management is done in the component CmpIecTask.

Four different types of tasks are possible:

1. Cyclic tasks:
These tasks are executed in a specified interval.

2. Event tasks:
These tasks are executed once every time, if a specified IEC BOOL variable changed its
value from FALSE to TRUE.

3. Freewheeling tasks:
These tasks are executed without a specified cycle in a loop. To enable running tasks with a
lower priority, the freewheeling task frees the processor in a specified way:

- Default: 20% of its execution time, the task will sleep at the end of a cycle

- If a processor load maximum is specified in the scheduler, this is the load value for the
freewheeling tasks too, e.g.
processor load maximum = 60%
execution time of the freewheeling task = 10ms
-> Sleep time = (100% - processor load maximum) * 10ms = 40% * 10ms = 4ms

- Fix sleep time:
A fix sleep time can be specified for the freewheeling task.
This value can be specified additionally in the scheduler with the following setting:
[CmpSchedule]
Task.Freewheeling.Cycletime=10
In this example, every freewheeling task sleeps at the end of its cycle 10ms.

4. External Event tasks:
An external event task is executed every time, an external (runtime event, hardware event)
occurred. The event is specified by name in the device description of the device. This event
can be specified in the task configuration in CODESYS, if external event task is selected.

The list of all IEC-tasks in an application is generated by CODESYS in the form of initialized IEC data
structures. At download, this list is created during initialization and is transmitted to the CmpIecTask
component after initialization. The tasks are reported then to the scheduler and are created specifically,
in accordance with their type, as operating system tasks.

The format of the task description is explained in more detail below.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 39 of 39
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.5.1 Data Format of the task description
The download message contains information about an application's tasks in the form of initialized IEC
data structures.

The IEC data structures are initialized with the other variables after the download.
The data structures are defined as follows:

#define Cyclic 0x0000
#define Event 0x0001
#define External 0x0002
#define Freewheeling 0x0003

typedef struct
{
 char stName[51];
 short nPriority;
 short KindOfTask;
 char bMicroseconds;
 unsigned int dwInterval;
 unsigned int dwEventFunctionPointer;
 char stExternalEvent[51];
 unsigned int dwTaskEntryFunctionPointer;
 int tLastCycleTime;
 int tAverageCycleTime;
 int tMaxCycleTime;
 int tMinCycleTime;
 int tJitterMax;
 int tJitterLast;
}Task_Info;

typedef struct
{
 short nTasks;
 char stApplicationName[51];
 Task_Info* ptaskinfo;
}sys_setup_tasks_struct;

The sys_setup_tasks_struct structure contains the entire task configuration of an application.

3.5.2 Creating IEC tasks
void CDECL __sys__setup__tasks(sys_setup_tasks_struct* p)

This function is called after a download or after the boot project has been loaded. A pointer to a
variable in the sys_setup_tasks_struct structure is passed. This function saves a pointer to each task
and adds this task to the scheduler component.

3.5.3 Creating an external event task
As an external event we describe an event in the runtime system, on which a task can activated. This
event is typically generated out of a runtime system component, but could also be generated out of the
IEC-Code. An external event is always identified by its name, so the name of the event must be known.

To realize an external event task, three things are necessary:

1. You need a description of this external event in your device description (see additionally
chapter 6.4.5.1.4.1):

To specify an external event, you have to add the following section in your device description.
This is an example of an external event named “ExternalEvent1”.

<ts:section name="taskconfiguration">

 <ts:setting name="externalevents" type="cdata" access="hide">

 <ts:value><![CDATA[

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 40 of 40
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <externalevents>

 <externalevent>

 <name>ExternalEvent1</name>

 </externalevent>

 </externalevents>

]]></ts:value>

 </ts:setting>

</ts:section>

2. You need a component in the runtime system, that recognizes and store the event, that was
assigned to the specified task:

In the runtime system, the CmpSchedule component offers two events called
EVT_ExternalEventTaskCreateDone and EVT_PrepareExternalEventTaskDelete, if an
external event task is created or deleted. So the first thing that you have to do is to register to
these events (how to handle an external event is implemented as an example in the
CmpTemplate.c module of the starter package).

In your callback routine of the EVT_ExternalEventTaskCreateDone event, you have to store
the hEvent parameter. And in the callback routine of the
EVT_PrepareExternalEventTaskDelete event, you have to remove the hEvent.

3. Lust but not least you have to sent this event always, if the corresponding external event
occurred in the runtime system (like an interrupt, etc.). To activate the task once, that is
assigned to this external event task, you have to sent this event by CAL_SysEventSet(hEvent).

After this, you can assign the external event specified in the device description to your task in your IEC
program. After downloading your application this task should be executed every time, the event is sent
in the runtime system.

Equivalent to the handling in the runtime system, you can handle an external event in IEC-Code. All
needed runtime system interfaces for that are available as external System-Libraries.

3.6 Scheduling
Scheduling in the runtime systems means to call the PLC tasks at the exact specified cycle times or if
special events occurred. The scheduler here has the function to do the time control of each task and to
check the occurrence of specified events.

The scheduler is actually available in the following three different implementations for different target.

3.6.1 Single tasking
All the tasks are called here in an endless loop in the sequence that corresponds to their priorities. This
procedure is also called cooperative multitasking, as every task is carried out to the end without
interruption. Watchdog monitoring cannot be carried out here.

This implementation is typically used in very small embedded systems with no operating system. But
the implementation has one big disadvantage: The communication is done here in the main loop too!
So higher communication load here will lead to larger jitters of the IEC tasks. This disadvantage can be
dismissed by the next two implementations of the scheduler.

3.6.2 Timer scheduler
The timer scheduler implementation bases on the principle that each IEC task will be executed by one
timer device on the target. Some embedded targets have several timers on board, that can be used for
that. Typically this implementation is used on systems with no operating system.

The runtime scheduler is used in this context only to supervise the IEC tasks by a software watchdog.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 41 of 41
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.6.3 Multitasking
In multitasking systems, every IEC task is mapped to an operating system task. The SysTask
component of each operating system provides priorities between 0..255 (see chapter 3.7 for details).
The priorities of the IEC-tasks (0=Highest..31=Lowest) are mapped into the system priority range of
32=Highest..63=Lowest (TASKPRIO_REALTIME_BASE.. TASKPRIO_REALTIME_END).

In multitasking systems it is typical for the real-time operating system's scheduler to carry out the time-
driven activation of tasks. In this case, however, it is not generally possible to execute cyclic tasks with
high precision, only to react very quickly to specific events or interrupts. Because, however, a PLC
often must handle cyclic tasks, dedicated time control with high resolution is needed here. In the
system under consideration, this is implemented through a dedicated scheduler.

Not every operating system, what is more, supports a software watchdog to monitor task runtimes.
This is required in order, for instance, to detect endless loops reliably and to react to them. A PLC
scheduler therefore usually also provides a software watchdog functionality.

To provide a third level of safety, the scheduler should also, optionally, be able to trigger a hardware
watchdog, so that failure of the basic software in the runtime system can also be detected.

It must be possible for three activation procedures and two time-slicing procedures to be optionally
activated for the pure scheduling:

Activation:

1. Scheduling involving activation of all tasks at each schedule tick, where the activation time has
elapsed. Activation is typically carried out here by means of OS events. After that, the lower-level
OS scheduler activates and executes the tasks, in accordance with their priorities. Precise task
execution depends on the PLC scheduler being called at accurately measured, evenly spaced
times.

2. As 1, except that only the highest priority task is activated. This can simplify the time-slicing
described later, since only one active task has to be suspended and resumed.

3. Certain real-time operating systems (such as RTLinux) are already able to call tasks cyclically with
high precision. In this case, the PLC scheduler only needs to monitor the tasks (watchdog), not to
execute time control.

Time-slicing:

• External time-slicing: An external task extracts time slices here from the processing of the PLC
task. No PLC tasks are therefore activated during the suspend phases, and all the PLC tasks that
are currently running at the start of this phase are suspended. All the tasks are then regularly
activated again and processed in the resume phase. This mechanism based on message queues
(see SysMsgQ) for synchronisation.

• Internal time-slicing: The scheduler itself reserves time-slots here, e.g. for the rest of the system
(communication). This makes it possible to specify a fixed period for PLC processing along with the
time-slot for the rest of the system (e.g. 800us PLC, 200us rest).

Note for devices with imprecise microsecond timing:

The multitasking scheduler tolerates microsecond timing errors of 25 %. That means a cyclic task with
1 ms interval is scheduled as expected if the microsecond timing (performance counter) and the
scheduler tick are synchronized with a deviation < 25%. However, there are modern CPUs (Cortex A8-
ARMs, Via X86 1.2 GHz, Atom) with e.g. CE 6 where the tick and the performance counters very soon
show deviations of e.g. 751 microseconds. So a 1 ms task will miss some ticks (e.g. 3 % of a 1 ms
task are missed). For such cases, the following setting in the runtime system configuration file is
available to schedule the IEC tasks based on millisecond times even if microsecond timing is
implemented (if 0 or setting not available, microsecond timing will be maintained)

[CmpSchedule]
DontUseMicrosecondTiming=1

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 42 of 42
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.7 Task management
Each task in the runtime system has a specified logical priority. This priority is separated into the
following 8 task segments, each with 31 priorities to categorize tasks:

Usage Defines Priority

Task segment 1

For system tasks like
scheduler

TASKPRIO_SYSTEM_BASE 0

TASKPRIO_SYSTEM_END 31

Task segment 2

For real time tasks like IEC-
tasks

TASKPRIO_REALTIME_BASE 32

TASKPRIO_REALTIME_END 63

Task segment 3

High priority tasks like high
prior communication tasks

TASKPRIO_HIGH_BASE 64

TASKPRIO_HIGH_END 95

Task segment 4

Above normal tasks

TASKPRIO_ABOVENORMAL_BASE 96

TASKPRIO_ABOVENORMAL_END 127

Task segment 5

Normal priority tasks like
standard communication task

TASKPRIO_NORMAL_BASE 128

TASKPRIO_NORMAL_END 159

Task segment 6

Below normal tasks

TASKPRIO_BELOWNORMAL_BASE 160

TASKPRIO_BELOWNORMAL_END 191

Task segment 7

Low task priorities.

TASKPRIO_LOW_BASE 192

TASKPRIO_LOW_END 223

Task segment 8

Lowest task priorities for
background tasks.

TASKPRIO_LOWEST_BASE 224

TASKPRIO_LOWEST_END

TASKPRIO_IDLE

TASKPRIO_MIN

255

So each task priority should be assigned to one of these 8 task segments.

A task can be specified with a special m4-Macro in its component Dep.m4 file. These macros are
described in 10. If you specify your task with this macro, the list of used tasks in your system can be
generated by the RTS-Configurator. Additionally this entry will exported in the Reference-
Documentation by the RTS-Configurator too!.
So if you would like to know, which tasks with which priority are used in the runtime system, please
look in the corresponding Reference-Documentation, in the Dep.m4 files for the macros or in the Dep.h
files for the categories “Task”, “Task prefix” or “Task placeholder”.

3.8 Configuration (Settings)
The configuration of the runtime system is done in the CmpSettings component. The settings
component has the possibility to use different backends. Actually available are the embedded backend
and ini-file backend.

3.8.1 INI file backend
The INI file backend operates on one or several INI files (examples: CODESYSControl.cfg,
Gateway.cfg). Each component has one section in the INI file to specify configuration settings. See
also: Chapter 9.1

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 43 of 43
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

The configuration file(s) to be regarded must be specified when starting the runtime system.

Example:
[CmpApp]
Bootproject.StoreOnlyOnDownload=0

During runtime, the names of the boot projects are written to the runtime configuration file. Due to this
writing process the configuration file eventually may get damaged. Unfortunately, a corrupt
configuration file will preclude the runtime system from being started, even not for communication
purposes. This undesirable situation can be circumvented by employing one of the following
procedures:

a) By CMPSETTINGS_MASTER_CONFIG the name of a master configuration file can be
defined, which will be copied and used in case of failure of the standard configuration file.

b) The standard configuration file is set to read-only. In return, it has to contain a link to an
additional cfg-file, the names of the boot projects can be written to.
The following steps have to be executed for specifying references to additional cfg-files:

1. Add the following entry to the file CODESYSControl.cfg of the SP runtime:
[CmpSettings]
FileReference.0=ExtConfig0.cfg
FileReference.1=ExtConfig1.cfg
…

2. Delete the complete section entitled [CmpApp] from CODESYSControl.cfg.

3. Create the files referenced by the master configuration file (ExtConfigx.cfg) within the
same directory.

4. Set CODESYSControl.cfg to read-only.

5. Start the runtime system.

In consequence, the master configuration file will be write-protected and new entries will be
written to the first file referenced that has no write protection.

3.8.2 Embedded Backend
The Embedded backend has no file access. Here all settings are returned “hard coded” in the
corresponding c-file CmpSettingsBackendEmbedded.c. This is typically used on small systems with no
file system.

3.9 Logging
The logger component (CmpLog) has the possibility to log all events of the runtime system like the
start up and shutdown and all application downloads.

The logger can be instantiated, so each component can create its own logger.

One logger instance is always available and this is called the standard logger. In the standard logger,
all components log by default.

One log entry consists of:

Entry Description

Timestamp Can be a RTC, microsecond or millisecond value (depends on the
log options)

ComponentId of the
component, that specifies the
log entry

Each component in the runtime system has a unique Id. This Id
must be specified here to recognize the source of the log entry.

Log class The following log classes are available:

#define LOG_INFO 0x00000001

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 44 of 44
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Entry Description
 For general information

#define LOG_WARNING 0x00000002
 For warnings

#define LOG_ERROR 0x00000004
 For errors

#define LOG_EXCEPTION 0x00000008
 For exceptions

#define LOG_DEBUG 0x00000010
 Only for debug log entries

#define LOG_COM 0x00000040
 For communication entries

#define LOG_INFO_TIMESTAMP_RELATIVE
 0x00000080

For entries with a timestamp, that is calculated as a difference from
the log entry before

Error Id The error Id, if an operation failed

Info Id An unique Id per component, that can be used to specify a longer
test for the log entry in the target description of CODESYS. This is
used to save resources in the runtime system to store the log entries

Info string Info string with optional and variable information, e.g. application
names or task names

The log entries can be added to the standard logger with the interface function LogAdd(). It can be
used for example:

CAL_LogAdd(STD_LOGGER, COMPONENT_ID, LOG_ERROR, ERR_FAILED,
 LOGID_CmpApp_OpenBootprojectFailed, "<app>%s</app>", pszAppName);

3.10 Hardware and Operating System Abstraction Layer (Sys-Components)
The hardware and operating system abstraction layer is covered by the so called system interface
components. Each system component is designed for a special assignment and a logical operation
system object.

The description of all available system interfaces declared in detail in the system reference guide of the
runtime system (“CODESYS Control Runtime System Reference.pdf”).

3.10.1 Time access (SysTime)
In this component, you can have access to ticks with different resolutions (millisecond, microsecond
and nanosecond) for e.g. time measurements and access to some functions of the real time clock
(RTC).

3.10.2 Serial interface (SysCom)
This component provides access to a serial device (RS232). You can open and close a device, specify
settings to the device and read and write data to this device.

3.10.3 Exception handling (SysExcept)
The first level exception handling is done in this component. This component realizes on different
platforms and operating system a defined exception handling.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 45 of 45
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

If the exception is caught, the register set of the processor will be investigated (and the task, if
available) and will be forwarded to the task or timer component to investigate the source component of
the exception.

With the processor context a call-stack can be investigated by higher level exception handling
components.

3.10.4 File access (SysFile)
This component provides routines for file access. You can open or close a file, read from or write into a
file, delete or rename a file, set and get the actual file pointer in a file and so on.

One thing is quite important:

At the routines where a file name is specified as a parameter, there are two different implementations.
E.g. to open a file can be done in with two different interface functions:

SysFileOpen(char *pszFile, ACCESS_MODE am, RTS_RESULT *pResult)

SysFileOpen_(char *pszFile, ACCESS_MODE am, RTS_RESULT *pResult)

The only difference between the SysFileOpen and the SysFileOpen_ is the handling of the file names.
If a path (absolute or relative) is specified in the file name, the path is used unchanged.

If no path is specified in the file name, the two functions work different:

In SysFileOpen, a default path is added to the file name by the runtime system. For the SysFile
component, paths can be specified for each ending of the file name.

In SysFileOpen_, no default path is added and the actual working directory is used.

This difference in path handling is identical for all SysFileX and SysFileX_ routines.

3.10.5 File access using flash (SysFileFlash)
As an alternative to SysFile (see 3.10.4), this component provides routines for file access. You can
open or close a file, read from or write into a file, delete or rename a file, set and get the actual file
pointer in a file and so on.

As a difference, this component does not use the file system of an operating system, but uses the
SysFlash component.

A basic file system is implemented. It is based on a static table of files, with fixed file names and
maximum file sizes.

The file table has to be defined in sysdefines.h in variable FILE_MAP. An example is provided in the
header file of the component.

3.10.6 Flash access (SysFlash)
This component provides routines for flash access. The usage of this component is optional. It
provides functions to write a data buffer to flash, read from flash, and get the address and size of the
flash. It contains also a function that is called when a flash based file is closed.

The flash can be used as

• a basis for the SysFileFlash component, and

• for optional execution of the user code in flash. This can be used to reduce the RAM memory
requirements.

3.10.7 Directory handling (SysDir)
The directory component provides access to a file system. Directories can be scanned, created,
deleted or renamed.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 46 of 46
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.10.8 Memory access
The handling of memory is provided by the SysMem component.

3.10.8.1 Heap and static memory (SysMem)
To access the heap memory (dynamic memory allocation), there are different routines to allocate and
free code and data memory. Code memory can be used to execute code in this memory.

To access static memory for the PLC application, there is a function called SysMemAllocArea(). Here a
static memory for the code and data area for the PLC application can be specified.

3.10.8.2 Physical memory access and shared memories (SysShm)
To get access to physical memory (e.g. dual port RAM of a card), the SysShm provides routines to
map the physical memory into the memory of the runtime system.

3.10.9 Dynamic loading module (SysModule)
The dynamical load of components can be used on targets with an operating system. This functionality
is provided by the operating system and can be used via the SysModule component.

The components must be available in a dynamical loadable format (e.g. under Windows a Dll, under
VxWorks an o-file).

3.10.10 Ethernet sockets (SysSocket)
The access to the TCP-stack, the SysSocket can be used. The socket interface provides TCP, UDP
and RAW sockets.

The SysSocket component provides additionally more higher level interfaces, to set up a TCP or UDP
client and server.

3.10.11 Debug console outputs (SysOut)
To print messages at the console (if available), you can use the SysOut component. This component is
used for example by the logger, to print all log entries at the standard console output.

3.10.12 Message queues (SysMsgQ)
MessageQueues are a special higher level object to use for inter thread and task communication. The
message queues are thread-safe and are used in the runtime system for example for the time slicing
implementation of the Scheduler.

3.10.13 Interrupt handling
Interrupt handling is a very low level and platform dependent component. This component provides
routines to open an interrupt and to register an interrupt handler to this interrupt. All interrupt can be
enabled or disabled with this component too.

3.10.14 PCI bus access (SysPCI)
This component provides access to the PCI bus. The PCI configuration can be read and written for
example to auto detect cards that are plugged in the PCI bus.

3.10.15 Device port access (SysPort)
Accessing devices is typically done via so called ports. The SysPort component provides access to
devices via these ports. Port values can be read and written.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 47 of 47
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.10.16 Timer handling (SysTimer)
Timer devices can be used for processes with a strong time constraint. The SysTimer component
provides access to timer devices on the target. Timers are typically used in the runtime system for the
cyclic call of the runtime scheduler or to execute IEC tasks with the specified cycle times.

3.10.17 Target information (SysTarget)
The SysTarget component provides access to the target information like vendor and device name,
target Id and version or the node name for the communication. The node name is detected in some
implementations from the node name of the operating system that was assigned to the target.

3.10.18 Task handling
These components are only available on operating systems with tasks or threads

3.10.18.1 Synchronization and semaphores (SysSem)
To synchronize access to common data between several tasks or threads, the SysSem component
can be used to handle synchronization objects, called semaphores.

3.10.18.2 Operating system events (SysEvent)
To activate tasks or threads, the operating systems provides events to activate a task from another
task.

3.10.18.3 Task handling (SysTask)
The SysTask component provides routines to create and delete tasks, to suspend (set into sleep) and
resume (wake up) tasks and so on.

3.10.19 Optional system components for target visualization
There are optional system components that are needed by the CODESYS target visualization. These
components can be added to the runtime system, if a graphical interface on the target is available.

3.10.19.1 Window handling (SysWindow)
The SysWindow component provides access to the window handling of the graphical environment. The
target visualization typically runs in a window.

3.10.19.2 Basic graphic routines (SysGraphic)
The target visualization uses some basic graphic operations to display all visualization objects. These
basic operations are provided by the SysGraphic component.

With earlier versions, the size of JPEG images in the Windows and Windows CE target visualization
was limited to 1024*768*3 bytes (approx. 2.3 MB). As from V3.5.1.0 the limit can be configured by an
entry in the PLC configuration file CODESYScontrol.cfg:

[SysGraphic]
Win32.MaxJpegByteArraySize=5000000

Note however: The limit should not be chosen too big in order not to waste memory and because the
CE CreateDIBSection function may fail with 10 MB pictures.

3.10.20 Process handling
On operating systems with the possibility to use processes, there are some components to use these
processes. This components are typically used in the runtime system to spawn an own process of the
target visualization to separate the runtime system from the part that displays the graphic information
of the target visualization.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 48 of 48
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.10.20.1 Processes (SysProcess)
The SysProcess component provides access to create and delete processes.

3.10.20.2 Process synchronization (SysSemProcess)
To synchronize access to common data objects from several processes, the SysSemProcess
component provides access to process semaphores.

3.10.21 Direct Ethernet controller access (SysEthernet)
This component provides direct access to an Ethernet controller. This is typically used by the
EtherCAT drivers to get direct access to an Ethernet controller.

3.11 Memory Management
In embedded system, the usage of the memory must reach the following requirements:

• Usage of dynamic memory only at start up

• Avoid memory fragmentation with usage of alloc and free

• Static memory should be preferred

These requirements are covered by the CmpMemPool component. This component allows to use a
static array that can be split up into a chained list of memory objects with the same size and this is
called a memory pool. One memory block from the pool can then be used and free-ed with the
CmpMemPool component. The unused blocks are incorporated in the memory pool to use it for the
next object.

If all block of the pool are used, there is the possibility to allocate new block from the heap memory. If
you release such memory block from the heap, the memory is not physically release! The block is
incorporated in the memory pool to use it for the next object.

3.12 Events
All type of events are handled in the runtime system by the event manager component CmpEventMgr.
We separate here two different kind of event users:

• Provider: Component, that provides an event

• Consumer: Component, that uses an event

The CmpEventMgr has routines for providers to create and delete and event.

For the consumer, there are routines to open and close events and to register callbacks to an event.
Callbacks can be functions or methods of objects (this works with C, C++ and IEC consumers).

One event is always structured as followed:
typedef struct
{
 EVENTID EventId;
 CMPID CmpIdProvider;
 unsigned short usParamId;
 unsigned short usVersion;
 void *pParameter;

void *pUserParameter;
} EventParam;

The event Id consists of the high word with the event class and the low word with the event Id. The
event class can be one of the following:

#define EVTCLASS_INFO 0x00010000

#define EVTCLASS_WARNING 0x00020000

#define EVTCLASS_ERROR 0x00040000

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 49 of 49
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

#define EVTCLASS_EXCEPTION 0x00080000

#define EVTCLASS_VENDOR_SPEC 0x10000000

The event Id is unique for each component, but not unique in the runtime system! Only the
combination of the event Id and the component Id makes an event unique!

The second parameter of an event is the component Id of the provider.

The parameter Id and the version specify the parameter that is provided by the pointer pParam. Every
provider has to specify a structure with a specific parameter Id that is sent in pParameter.

The last parameter can be a parameter that is specified by the consumer at register a callback. This
parameter is sent back with the event.

3.13 Exception Handling
Exception handling refers to the way processor exceptions or serious errors in program execution are
handled. When such an exception occurs, it is not usually possible for normal program execution to
continue.

The exception handling system is managed by the SysExcept component. This performs all the
exception handling in a manner specific to the operating system. The task that triggered the exception,
the exception itself and the context (IP register, base pointer and stack pointer) are determined here:

• Determining the triggering task

• Exception number (specific to the operating system)

• Determining the exact error location (current instruction pointer)

• Call stack (base and stack pointers)

The name of the exception in the operating system-dependent name is then converted to the name or
number that conforms to the runtime system.

Every component can register itself for exception handling to the SysExcept component.

Typically, the SysTask component will register itself, in order to obtain all the exceptions. The operating
system handle for the task is then converted into the SysTask handle in the SysTask component. An
exception handler can be given to every task when it is created (SysTaskCreate()). In the event of an
exception, this is then called from the SysTask component. The reason for this is that it is only the
component that set up a task that is able to handle the exception properly.

If, for instance, a PLC task is set up, the exception handler will be appended by the multitasking or
application component. When this handler is then called, the PLC would stop, etc. From the context it
is then possible to determine the call hierarchy in the PLC program.

Every task is monitored for at least the following exceptions:

• division by 0

• access violation (access to invalid addresses)

• invalid opcode

• error in dynamic memory allocation (malloc)

When an exception occurs, the following steps will be carried out with the aid of the SysExcept
component:

1. the task or application will, according to the specification or setting, be halted, or the IEC program
will first be asked about how to continue

2. the call hierarchy is determined (call stack of all POUs)

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 50 of 50
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.13.1 Structured exception handling (rts_try / rts_catch)
The runtime system has a build in structured exception handling. It can be activated by the define
RTS_STRUCTURED_EXCEPTION_HANDLING.

The structured exception handling based on the standard C-Lib API functions setjmp and longjmp.
With setjmp, an actual context can be saved. With longjmp you can jump back to this previous saved
context. Because these functions are available on nearly every platform, this is a highly portable
mechanism.

To use this mechanism, you have to import the following interface and the functions in your Dep.m4
file:

USE_ITF(`SysExceptItf.m4')

SysExceptRegisterJmpBuf
SysExceptCatch
SysExceptUnregisterJmpBuf

After this you can use it like the following code snippet:

rts_try /* Mandatory */

{

 ... /* Code where the exception can occur */
}
rts_catch /* Mandatory */
{
 RTS_UI32 exceptionCode = EXCPT_GET_CODE();
 RegContext *pExceptionContext = EXCPT_GET_CONTEXT();
 ... /* Exception handling code */
}
rts_finally /* Optional */
{
 ...
}
rts_try_end /* Mandatory */

With this mechanism, you can handle every exception exactly at the place, where it occurred without
loosing the context! This can be helpful for example to handle exceptions at layer 7 services and to
send back an online error code without disturbing the communication stack and without loosing the
communication.

3.14 License Check
Extra license fees have to be paid for various components of the runtime system and the programming
system.
This chapter describes the protection of features that have been licensed for a certain device type.

The check is performed by components which an OEM has already purchased and is to prevent the
customer of an OEM from using non-free components on controllers of other manufacturers who have
not purchased such components. Furthermore, the license check is to make sure an end user can only
work with components which have actually been tested and activated for the device in question.

A working license check needs a license file (3s.dat) which must be part of the controller firmware. It
defines which features are activated and also contains the exact ID of the runtime system. So it can
only be used on the device in question. 3S-Smart Software Solutions will provide the OEMs with such a
license file for each controller type. This file must be made available in the directory of the runtime
system.

The correct license file is generated by 3S-Smart Software Solutions. So following informations are
needed:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 51 of 51
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Manufacturer: Customer

Name of controller: … … …

Device type*:
Vendor-ID:
Device-ID*:

CPU family: x86
 ARM
 PowerPC
 MIPS
 SH
 Blackfin
 Tricore
 Nios
 C16x

Operating system: Windows 2000/XP
 Windows CE
 Linux
 VxWorks
 QNX
 µCOS
 others:

Supported features**:
 Visualization:
 Target Visualization
 Web Visualization
 Field bus (Master /

Slave)**:

 CANopen
 EtherCAT
 SercosIII
 Profibus
 Profinet
 Modbus (TCP)
 Modbus (Serial)
 DeviceNET
 EtherNet/IP

 FDT
 SoftMotion:
 SoftMotion

*) This information can be found in the RTS component SysTarget or in the device description file
(devdesc.xml) of your controller:
 <Device>
 <DeviceIdentification>
 <Type>4102</Type> <-Device type
 <Id>0000 0002</Id> <-Vendor-ID and
Device-ID

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 52 of 52
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <Version>3.4.0.0</Version>
 </DeviceIdentification>
 …
**) Please fill out only 3S Field busses (stack or configurator) – no own developments!

Every single controller type has its own ID consisting of vendor ID and device ID. An OEM can freely
define the device IDs for their controllers but needs to register them at 3S to enable 3S to generate the
license files.

If the license file is missing or is incorrect, the non-free components will either not run at all or run in a
demo mode and the logger will issue an error message. The visualization in demo mode displays a
box on the upper right of the screen that identifies the demo mode. The demo mode of the field bus
stacks are indicated with an orange icon (instead of the green icon) in the device tree.

This works on components only from CODESYS V3.4 or higher. Devices with an older version of
CODESYS which work with non-free components of an older version are not affected by this licensing
mechanism

The actual license check takes place at runtime. If OEMs want to prevent that customers using a non-
licensed field bus when programming their application, they can do so by making an entry in the device
description (see “allowonly” property of a Connector in device description file)..

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 53 of 53
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3.15 Online User Management
In the runtime system, you can use a User Management similar to the management in a CODESYS
Project. With this User Management, all important Online Operations are protected.

You can create Users and Groups and you can assign Users to these groups. For details see the
Online Help of CODESYS in the chapter:
 Editors > Device Editors > Generic Device Editor > Users and Groups

You can assign access rights on all available runtime system objects to these Groups. For details see
the Online Help of CODESYS in the chapter:
 Editors > Device Editors > Generic Device Editor > Access Rights

To enable this feature, you have to enable the corresponding Device Editor page in your Device
Description:

<DeviceDescription xmlns="http://www.3s-software.com/schemas/DeviceDescription-
1.0.xsd">

<Device>

 <Connector moduleType="256" interface="Common.PCI" role="parent"
explicit="false">

 <Appearance>

 <ShowEditor>UserManagementPage</ShowEditor>

 </Appearance>

 </Connector>

</Device>

</DeviceDescription>

Additionally you have to integrate the following components in your runtime system:

1. CmpUserMgr

2. CmpUserDB (worked on a simple file)
 This stores the complete user management in two files:
 UserMgmtDB.csv and UserMgmtRightsDB.csv
or
CmpUserEmbedded (for hardcoded Users, Groups and Rights)
 See this component as a template. You have to adapt this to your specific
implementation.

3. CmpCryptMD5

After this work is done, you can use the online user management.

ms-its:C:\Program%20Files%20(x86)\3S%20CoDeSys%20V3.5.0.0\CoDeSys\Online%20Help\en\CoDeSys.chm::/f_editors.htm�
ms-its:C:\Program%20Files%20(x86)\3S%20CoDeSys%20V3.5.0.0\CoDeSys\Online%20Help\en\CoDeSys.chm::/f_device_editors.htm�
ms-its:C:\Program%20Files%20(x86)\3S%20CoDeSys%20V3.5.0.0\CoDeSys\Online%20Help\en\CoDeSys.chm::/f_generic_device_editor.htm�
ms-its:C:\Program%20Files%20(x86)\3S%20CoDeSys%20V3.5.0.0\CoDeSys\Online%20Help\en\CoDeSys.chm::/f_editors.htm�
ms-its:C:\Program%20Files%20(x86)\3S%20CoDeSys%20V3.5.0.0\CoDeSys\Online%20Help\en\CoDeSys.chm::/f_device_editors.htm�
ms-its:C:\Program%20Files%20(x86)\3S%20CoDeSys%20V3.5.0.0\CoDeSys\Online%20Help\en\CoDeSys.chm::/f_generic_device_editor.htm�
ms-its:C:\Program%20Files%20(x86)\3S%20CoDeSys%20V3.5.0.0\CoDeSys\Online%20Help\en\CoDeSys.chm::/access_rights.htm�

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 54 of 54
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

4 Portings

The runtime system is written completely portable. With the system interfaces, it can be ported very
easy to an operating system or a special processor. The following portings are still available. Operating
systems or processors/controllers that are not on the list can be provided on request.

bold and green: Standard product platforms of 3S

italic: Available platforms, release must be done custom specific

Operating System Version Platforms Optional

CODESYS Control Win V3 NT .. XP X86 Target-Visu

CODESYS Control RTE V3 NT .. XP X86 Target-Visu

Windows CE 4.0 .. 5.x X86, ARM Target-Visu

VxWorks 5.4 .. 6.x X86, PPC Target-Visu (planned)

Linux Kernel 2.6

Standard Linux

OSADL Linux

X86, ARM, PPC Target-Visu (planned)

-- -- Infineon Tricore

-- -- ARM

PXROS Tricore

-- -- Blackfin

-- -- Altera NIOS II

4.1 Windows Specific Information
The windows runtime runs on NT..XP systems. There are the following derivates:

• CODESYS Control Win V3: soft real time behaviour

• CODESYS Control RTE V3: hard real time behaviour

• CODESYS Simulation: runtime system for the simulation feature of CODESYS (soft real time
behaviour)

• CODESYS HMI: runtime system without I/O handling, for the purpose of running visualization
applications on external devices

Also the Gateway consists of runtime system components:

• CODESYS Gateway V3: runtime system with gateway server functionality

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 55 of 55
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

4.1.1 Windows runtime services
The following windows runtime systems run as a windows service. They have all a command interface
with the following calling options:

-i: Service gets installed

-l: Specification of the Windows user account (add the username), under
which the service should be started (only together with option –i)

-p: Password of the Windows user (only together with –i)

-u: Service gets de-installed

-s:
[<CODESYSControl.cfg>]:

Service gets started. A cfg-file can be specified optional.

-e: Service gets terminated

-d: Service gets started as application in the console mode (running in a
DOS box)

-r: Debugging of the service without console window

--startmode=auto: Service gets started automatically by Windows

--startmode=demand: Service can be started manually under Windows

4.1.1.1 CODESYS Control Win V3 (soft real time)
Windows soft real time runtime system (product name: CODESYS Control Win V3) based on a
Windows service that is running with REALTIME process priority in user mode. All hardware access
routines are handled by a kernel driver called SysDrv3S.sys. This driver must be installed for each
(PCI) card that is plugged into the PC and wants to be used by the runtime system.

4.1.1.2 CODESYS Gateway Service V3
After a CODESYS standard installation, at system start the Gateway Server will be started
automatically as a service. In addition and also automatically a separate application (GatewaySysTray)
will be started, providing the gateway symbol in the system tray and – to be opened via this symbol –
the gateway menu.

The gateway symbol indicates whether the gateway service is stopped () or running ().

The gateway menu contains commands for explicit starting and stopping the gateway service as well
as command „Exit Gateway Control“ for terminating the GatewaySysTray application (not however the
gateway service !). The GatewaySysTray application also might be started via the Programs menu.

The start mode for the gateway can be set in the Windows service manager or via a call option (see
above: call options).

Note: The Windows firewall should be deactivated for the gateway systray application.

4.1.1.3 CODESYS Service Control V3
As authorization for starting/stopping services is strictly limited by Windows Vista, from CODESYS
Version V3.2 SP1 Patch 2 onwards the services of CODESYS Control Win V3 and CODESYS
Gateway Service V3 will be controlled by CODESYS Service Control V3.

4.1.1.4 Brand labeling
The default names of the services controlled by CODESYS Service Control V3 may be modified by
editing the following resources:

ServiceControl.exe:

ID 3: vendor name (used for shared memory name!)

ID 4: name of the CODESYS Control service

ID 5: name of the Gateway service

GatewaySysTray.exe:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 56 of 56
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

ID 8: vendor name (used for shared memory name!)

ID 9: name of the Gateway service

CODESYSControlSysTray.exe:

ID 8: vendor name (used for shared memory name!)

ID 9: name of the CODESYSControl service

4.1.2 CODESYS Control RTE V3 (hard realtime)
Windows hard real time runtime system (product name: CODESYS Control RTE V3) operating with an
own scheduler that runs windows as an idle task. All other real time tasks are executed before
Windows. A special time-slicing mechanism distributes the process consumption in a fix quota
between the plc tasks and the windows operating system. This quota can be for example 70% plc and
30% windows.

4.1.3 CODESYS integrated runtime systems

4.1.3.1 CODESYS simulation
Windows soft real time runtime system integrated in CODESYS, used for the simulation feature.

4.1.3.2 CODESYS HMI
Windows soft real time runtime system (product name: CODESYS HMI) which corresponds to the
CODESYS Control Win V3 runtime system, however with deactivated I/O-handling functions. Serves to
run a visualization application on a corresponding device (standard device: CODESYS HMI for Win32).

4.2 Windows CE Specific Information
Under Windows CE, we use the timer interrupt for the tick source of the runtime scheduler. All PLC
tasks are created as operating system threads and are triggered by events from the runtime scheduler.
The scheduling of the tasks is done by the Windows CE scheduler.

Win CE specific settings in the runtime system configuration file (*.cfg):

• The communication cycle interval can be configured in order to control CPU load:
[ComponentManager]
WinCE.CommCycleInterval=5

The sleep duration after each comm cycle will be 5ms in this case, default: 1.

• Under Windows CE it is not possible to handle relative paths. So the default behaviour of file
transfer and access under Windows CE has changed as from V3.4 SP4. From this version on,
by default in the device dialog there is no access to paths beyond the "working directory".
For activating the old behaviour (access to all files, e.g. also in the root directory), the following
setting can be added to the runtime system configuration file:
[SysFile]
WinCE.AllowRootAccess=1

• An explicit folder can be defined, to which the Target-Visualization files (image files, textlists
etc.) get redirected. By default, that is when the setting is missing, they get stored in a
subfolder “visu” of the runtime system folder!
[SysFile]
WinCE.VisuFilePath=\Hard Disk\SpecialFolder

Because CE cannot handle relative paths, the complete path of the desired visu files folder
must be specified in the setting!
Example: Setting „WinCE.VisuFilePath=\Hard
Disk\SpecialFolder\SpecialVisuFolder“ effects that folder „SpecialVisuFolder“
will be created as a subfolder of „\Hard Disk\SpecialFolder“ (in case it does not yet

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 57 of 57
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

exist) and the visualization files get stored there. The path “Hard Disk\SpecialFolder”
must already exist!

• If SRAM is used for retain handling with a specified address it might be necessary to have the
following additional setting.

[SysShm]
WinCE.DisableMapPhysicalInVirtualAllocCopyEx=1

As the Sysdriver uses the VirtualCopy function for mapping hardware addresses to user
program the behavior here depends on the CE image.
This setting has to be set on some devices where it is necessary to have the
"PAGE_PHYSICAL" flag in the call of "VirtualCopy" but not in the call of "VirtualAllocCopyEx".
Otherwise it is possible that the address that the Sysdriver returns to the user program is not
correct and retains do not work.

• Per default, the CE runtime system tries to change the system memory division to get more
program memory and less storage memory. This behaviour can be suppressed by the setting

[SysGraphic]
WinCE.DontChangeMemorySettings=1

So other applications will get more program memory.

• Up to version 5, Windows CE processes have a 32 MB address space which may be too small
for big applications. To overcome this restriction (only if the device has more than 32 MB
physical RAM), the OEM can change the memory layout of the device description (example for
a 32 MB area)

<ts:setting name="minimal-area-size" type="integer" access="visible">
<ts:value>0x2000000</ts:value> </ts:setting>

 <ts:setting name="maximal-area-size" type="integer" access="visible">
 <ts:value>0x2000000</ts:value> </ts:setting>

and the runtime configuration file

[SysMem]
WinCE.CE5BigAreaSize=0x2000000

As from V3.5 there is a new source file SysDrv3SCECustom.cpp for customer specific
adaptations. A new project file SysDrv3SCECustom.vcproj for CE6 and SysDrv3SCE7Custom.vcproj
for CE7 is available to build the dll by including the SysDrv3SCE.obj and the customer specific source
file.

4.3 VxWorks Specific Information
Under VxWorks, we can use different timers as the tick source of the runtime scheduler:

• Auxiliary Clock (if available)

• System Clock

• High priority task

All PLC tasks are created as operating system threads and are triggered by events from the runtime
scheduler. The scheduling of the tasks is done by the VxWorks scheduler.

Multicore CPUs under VxWorks 6.6 and newer are generally supported. However, currently the
runtime has to be bound exclusively to one core. Load balancing of PLC tasks is not supported.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 58 of 58
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

4.3.1 Distributed clocks
Distributed Clocks are used by some field busses (like EtherCAT) to synchronize the cycle start times
for all participants on the bus. For this feature, we need some special support from the operating
system, because we need to modify the cycle times of the tasks with a fine granularity of a few
microseconds.

VxWorks doesn’t support this, because such a feature would need some kind of one-shot timer and a
non-cyclic scheduler. Because VxWorks doesn’t support both, there is an own timeout scheduler
implemented in the CODESYS Runtime. To simulate a one-shot timer, this timeout scheduler uses the
cyclic timers, which are provided by VxWorks.

These are:

• The System Timer:
This timer is used by VxWorks for it’s own cyclic scheduler. Other tasks (from VxWorks or the
User) may run into trouble when using this timer for distributed clocks. Because they may
assume that they have a timer with a fixed period.

• The Auxiliary Timer:
This timer is an additional timer, which is provided by VxWorks on some boards. It’s based on
a completely independent timer source and therefore doesn’t interfere with other subsystems,
when using it in one-shot mode.

The Distributed Clocks feature can be enabled with the following setting in the runtime configuration
file:

[SysTimer]
VxWorks.TimerMode=OneShot

Note that if using this option, the clock which is assigned to the CODESYS runtime by setting
"VxWorks.TimerSource" will no longer tick periodically. This might have influence on other applications
running on the same platform.

4.3.1.1 Timer sources
When using distributed clocks, the selection of the timer source for the runtime is even more critical
than usually.

Using the system timer as a timing-source is in most cases very accurate because the system timer
can be programmed very accurate on most systems. But if other programs are running on the same
machine, this may lead to an undefined behaviour, because the system tick will occur randomly for the
second application.

Auxiliary timers need to be able to be programmed linearly with any cycle time. For example on an
x86, this is true for an Auxiliary APIC timer but not for an Auxiliary RTC timer, because the RTC can
only be programmed with frequencies exponentially to the base of two.

If such an Auxiliary Timer is available, it might be the better choice, because we don’t need to modify
the system tick and we don’t disturb other simultaneously running applications.

4.3.1.2 Performance & Accuracy
Because we need to reprogram the timer on every tick, the overall system performance will obviously
decrease slightly. Also the number of interrupts in our system will be higher, because the number of
timer interrupts increases. Beside our standard 1ms interrupts of the Runtime Scheduler, we get
additional interrupts for the new high-precision IEC tasks.

To overcome this problem a little bit, it is recommendable to increase the tick period of the Runtime
Scheduler as much as possible. Because all periodic IEC tasks are now scheduled over the high-
precision timer, this will only have effects on tasks which are triggered by event variables. So
increasing this to 10ms or even 100ms might be possible on most systems. This can be done with the
following setting in the Runtime Configuration:

[CmpSchedule]

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 59 of 59
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

SchedulerInterval=100000

When using one-shot timers, the tasks are still scheduled by the VxWorks Scheduler, but are triggered
from different „high-level schedulers“:

• Cyclic Tasks: Triggered by the high-precision timeout scheduler.

• Event Tasks: Triggered by the Runtime Scheduler. The Variable is checked in the Interval
given in the configuration file.

• Freewheeling: Those tasks are running all the time, and are interrupting themselves after
every cycle for a small amount of time to give control to the communication subsystem. The
tasks are woken up by the high-precision timeout scheduler.

• External Event Tasks: Triggered by an external Event. This can be generated in every
context and therefore depends on the context where the event is generated.

4.3.1.3 Jitter
Accuracy for all periodic tasks is obviously much higher now, but we might notice some jitter when the
timeouts of two tasks are overlapping. In any case the task with the highest priority will be served first,
but this can lead to situations where a low-priority task is started and slightly after this a high-priority
task get’s ready.

Without the Distributed Clocks, the execution of the tasks was synchronized by the periodic system
tick. Therefore all tasks where executed serialized, one after another. This means, that the task cycle
time was optimal and shorter before. Now low-priority tasks can be interrupted by higher priority tasks,
and therefore we will notice a higher jitter in those low-priority tasks than before.

4.3.1.4 Static Memory Areas
In VxWorks, all memory areas from the application are by default allocated dynamically on the heap. If
this is not intended for some reasons, it is possible to specify one or more static memory areas in the
runtime configuration file.

The user is able to move any area to a fix address (Code, data, input, output, retain,...), but it is
especially usefull to define his own areas.

For this purpose, we have the reserved upper 4 bits of the area flags which can be used by the user to
move some data to his own special areas. He can do this by specifying the following attribute:

{attribute 'location' := '16#8000'}

The 16#8000 is the area flag and should be the same as it is specified in the configuration file. e.g.:
[SysMem]
VxWorks.Area.0.Flags=0x8000
VxWorks.Area.0.Address=0x60540010
VxWorks.Area.0.Size=0x10000

Note, that the areas are always parsed from top down, and that the first area that matches the
requested area flags is used. Therefore, you should not define the first area with the flags 0xFEFF or
similar, but 0x0EFF instead.

4.3.2 Global object pools
If you have two or more instances of the CODESYS Runtime, running on the same PLC, you might
want to share Events and SharedMemories. Especially this is necessary if you want to use our
CmpBlkDrvShm to do real communication and routing on a CODESYS level between the Instances.
But even if you are running only one instance of CODESYS, but want to communicate with some of
your own external firmware components, which are not running inside of our CODESYS Runtime, you
might have the need to share some memory or send events between each other.

For these scenarios, CODESYS on VxWorks provides a global object pool for:
- events
- semaphores
- Shared memories

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 60 of 60
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

To share the global symbol table across application image boundaries, the runtime emits a new
symbol at first startup, called "g_PlcObjTab". This symbol is created only on the first instantiation of the
runtime. All memory within this table does not belong the process image. It is allocated dynamically on
the heap.

Between different instances of the CODESYS runtime, those objects are shared automatically, based
on their name. To use the objects independently from the CODESYS runtime, you can read the data
from the table manually in your part of the firmware. The shared object table has the following
structure:

#define OBJTAB_VERSION 0x00000001

typedef enum objTabType_e {
e_shm,
e_sem,
e_evt
} objTabType_t;

typedef struct shmEntry_s {
unsigned long ulAddress;
unsigned long ulSize;
} shmEntry_t;

typedef struct semEntry_s {
SEM_ID hSem;
} semEntry_t;

typedef struct evtEntry_s {
SEM_ID hEvt;
} evtEntry_t;

/* base type, which "contains" the above */
typedef struct objEntry_s {
objTabType_t tType;
char *pszName;
union {
shmEntry_t tShmEntry;
semEntry_t tSemEntry;
evtEntry_t tEvtEntry;
} u;
} objEntry_t;

typedef struct objTab_s {
unsigned long ulVersion;
SEM_ID hSem;
objEntry_t *ptEntries;
unsigned long ulSize;
unsigned long ulRefCnt;
} objTab_t;

4.4 Linux specific information
Under Linux we base on the kernel 2.6 with the pre-emption patches from Ingo Molnar and Thomas
Gleixner to get realtime behaviour. But the integration is transparent, so a naked vanilla standard
kernel could be used with the runtime system too.

The runtime system runs under Linux in the user mode. Physical and hardware access is done directly
from the user mode or is handled via a kernel driver.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 61 of 61
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

5 Communication

5.1 Overview
In the communication system for CODESYS V3 a distinction is made between four main
communication device types. Simple nodes form the core of the communication system. They form a
logic tree referred to as the control network and implement the CODESYS communication stack. A
gateway is itself a node within this tree and in addition offers an access point to this network from
outside. Clients, on the other hand, are not part of the network. Instead they use a gateway to
communicate with nodes in the network. Proprietary devices generally have no CODESYS runtime
system and use any non-CODESYS communication protocol.

The communication is based on existing network protocols such as UDP, CAN, serial etc. They can be
located at different levels. The communication protocol within the network is defined in layers, based
on the ISO/OSI Reference Model. The following table provides a comparison of the ISO/OSI layers and
the components specified for CODESYS:

Layer ISO/OSI CODESYS Description

1 Physical layer - Not specified (defined through lower-level
communication systems).

2 Data link layer Block driver Mapping of the communication to lower-level
network protocols. Ensuring data consistency
(CRC). Sending of blocks with defined maximum
length.

3 Network layer Router Sending of packets across several stations,
“routing”/multiplexing of packets from several
senders/receivers on a single “line”

4 Transport layer Channel
management

Secure, connection-oriented end-to-end
communication with packet repetition, timeout
monitoring, ...

5,6 Session or
presentation
layer

- Not specified

7 Application layer Application
services

Specification of the data exchange format,
distribution of requests to service handlers

Table 1 - Comparison of ISO/OSI and CODESYS model

The following diagram illustrates the structure of the communication stacks and the communication
between different device types.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 62 of 62
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

5.1.1 Usage scenarios
In order to be able to work conveniently (Plug&Play), securely and reliably within different project
phases, a distinction is made between three operating modes, with associated network behaviour.

• Commissioning
During commissioning the addresses of all nodes are determined dynamically. Manual
intervention is reduced to a minimum. During this phase the node addresses may change
fundamentally.

• Normal operation
During the transition to normal operation all node addresses are „frozen“, i.e. each node stores
its address permanently and automatically reloads it after a restart. Adding/removing nodes in
this state has no effect on the addresses of the other nodes. Addresses are only changed if
requested explicitly.

• Maintenance
If a programming or service PC is connected during operation for maintenance of individual
nodes, this PC will automatically be assigned an address, although it will not be able to change
the addresses of the other nodes.
In the delivery state new nodes are set to commissioning, i.e. the node address is
automatically assigned according to the network topology, without affecting the addresses of
other nodes in the event of misconfiguration. Once the new node has been implemented
correctly, it is set to normal operation, which means its address is fixed.

Legend

Host PC
(CoDeSys)

G
at

ew
ay

Router

Channel management

Block driver

Gateway

Pa
ra

m
et

er
. d

ev
ic

e

Router

Channel management

Block driver

Run time system
Param. device, Layer 7

R
ou

tin
g

de

vi
ce

Router

Block driver Block driver

D
ev

ic
e

w
ith

 P
LC

Router

Channel management

Block driver

Run time system
CoDeSys Control, Layer 7

Host PC
(Visu, etc.)

3S host component

Customer component

3S runtime component

3S communication component

e.g. Ethernet

e.g. RS232

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 63 of 63
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

5.2 General
Little-endian is specified as the byte order for all fields in all layers, in order to ensure compatibility
between different systems. In individual cases the byte order of the target device may be used
(application layer). This is explicitly mentioned where appropriate. In all other cases applies little-
endian byte order always applies.

5.3 Communication Layers

The components of the communication system are based on the ISO/OSI Layer Model. There are 4
components:

• Medium and datagram layer (Layer 2, „block driver“)
This layer handles the transfer of frames between nodes. Media access is located in this layer.
In addition, this layer prevents delivery of faulty frames (bit errors). Frame repetition etc. can
be implemented as an option.

• Network layer (Layer 3, “router”)
This layer handles routing and addressing. There is no error protection in this layer.

• Messages/protocol layer (Layer 4, “channel management”)
This layer defines a protocol for safe transmission of asynchronous services of any length.
This service is asymmetric. It consists of a common part and an associated client or server
component.

• Application layer (Layer 7)
This layer defines services based on Layer 4.

The following figure provides an overview of the communication system layers:

5.3.1 Block driver (Layer 2)
Block drivers map the 3S communication model onto the lower-level network (e.g. Ethernet, CAN,
serial). Each network type has its own block driver. The block drivers always send blocks with a
specified maximum size. The maximum size (512 bytes) is specified by the block driver. If necessary
the packet has to be subdivided into suitable pieces and reassembled at the receiving end. The block
driver must ensure that only correct blocks, i.e. blocks without transmission errors, are transferred to
the higher-level layer (router). If necessary this must be ensured with suitable measures, e.g. CRC.
Faulty blocks may be discarded, since layer 2 is not connection-oriented. Block repetition can
optionally be implemented for connections that are particularly susceptible to failure, in order to
minimize the fault rate in the overall system.

Block driver 1 Block driver 2

Router

Block driver 3 …

Channel management

Server Client

Address service Name service …

Gateway

Application
server

Gateway Run-time system

Layer 2

Layer 3

Layer 4

Layer 7

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 64 of 64
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

A block driver can manage several physical (e.g. 2 Ethernet cards) or logical connections
simultaneously, although each connection has to be registered separately with the higher-level router.

Block drivers are configured on system startup and are available from that time, provided the lower-
level network is available. They can only handle primitive send and receive, i.e. no explicit connection
setup or termination. Only one network address is specified as target (see 5.4.4.1), without additional
configuration (such as baud rate or start/stop bits).

Communication between two block drivers is on an equal basis, i.e. each of two devices can initiate the
communication at any time. If master/slave operation is required for a special communication medium,
it must be mapped accordingly. Ideally the connection between the two devices should be permanent.

5.3.2 Router (Layer 3)
The router is based on Layer 2 (block driver) and is responsible for sending blocks via any number of
intermediate levels or lower-level network types. Since block drivers already abstract from the actual
network type, routers only see logical CODESYS nodes.

Each node supporting the CODESYS communication system - and therefore any runtime system -
implements the router and can therefore pass on packets itself.

With regard to higher levels, the router offers the option of sending packets to any receiver within a
control network or receiving packets for certain services (corresponding to ports). Channel
management (Layer 4), which offers a secure connection, is one of the services based on the router.
The service number is 64. Further services include automatic address assignment, name resolution, or
network variable exchange.

5.3.3 Channel management (Layer 4)
Channel management offers a connection-oriented, secure end-to-end transmission between any two
nodes in the control network. Packets of any size can be sent. The maximum size only depends on the
resources available in the two end nodes. To this end the size of the communication buffer is
determined when the connection is set up. Without optimization, two buffers are required on both sides
(send buffer and receive buffer). In general a static buffer for a fixed number of maximum
simultaneous connections (channels) is provided in runtime systems.

Layer 4 deals with subdivision of potentially large packets into suitable blocks for the lower-level layers,
packet repetition, and correct reassembly of the packets on the receiver side. In addition, the status of
the connection is continuously monitored via keep-alive packets and (dynamic) timeouts, so that any
interruption of the connection can already be detected at this level, irrespective of the size and type of
the service.

Channel management uses a request reply procedure to avoid requests having to be discarded due to
insufficient resources. The node that has initiated the connection is the master and therefore the node
that may send requests. A new request may only be sent once a reply for the previous request has
been received. Similarly, the remote terminal (the slave) must send exactly one reply for each request
it receives.

This service is basically divided asymmetrically into a client and a server component using a common
base component. The client component is always used on the gateway, the server component on a

ConnectReq

Accept

Req

Req

Reply

Reply

Accept

Req

Req

ConnectReq ConnectReq

Accept

Req

Reply

Reply

ConnectReq

Accept

Req

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 65 of 65
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

target device. However, there is no reason why both components should not be implemented on the
same node. This node can then execute server and client services simultaneously. This is of interest if
two runtime systems are to communicate directly with each other, for example.

5.3.4 Application services (Layer 7)
Application services use a format with binary tagging in order to achieve upward and downward
compatibility of the services. Each node is identified with a unique number (tag) and its length.
Together, the tag and the length form the header of a node. The node either contains data with a fixed
structure or sub nodes, but never both at the same time.

Each Layer 7 packet starts with a general header that defines, among other parameters, the service to
be executed via service group and service number. The service group corresponds to a
communication port. A service handler can thus register on a certain service group and will then
receive all requests for this service.

If a service requires more space than is offered by the communication buffer for the associated
connection, the request has to be split into several service-specific requests (each of which has to be
acknowledged with an associated reply).

Each level 7 service handler must be registered at the generic level 7 server (CmpSrv). This can be
done in a C component with the following interface function:
CAL_ServerRegisterServiceHandler(<ServiceGroupt>, <Handler>);

To handle level 7 services in IEC, there is a different way. For this, the component must register a
callback handler at the event manager. So CmpEventMgr.library must be added. Additionally the
CmpSrv.library must be added to see, which event parameters are transmitted.

Example:

Declaration:

Result : RTS_IEC_RESULT;
hEvent : RTS_IEC_EVENT;

Implementation (first cycle in a program or FB_Init method in a function block):

hEvent := EventOpen(EVTPARAMID_CmpSrv, CMPID_CmpSrv, Result);
Result := EventRegisterCallbackFunction(hEvent, ADR(<Handler>));

After that, all services with the specified service group are generating an event, at which the IEC
event handler is called, e.g.:

Declaration:

FUNCTION EventCallbackFunction : UDINT
VAR_INPUT

 pEventParam : POINTER TO EventParam;

END_VAR

VAR

pServiceParam : POINTER TO EVTPARAM_CmpSrv;

END_VAR

Implementation:

pServiceParam := pEventParam^.pParameter;

With pServiceParam, all parameters of a standard service handler are accessible!

The feature of the event manager provides to register a callback method of a function block too. So
level 7 services can be handled in an encapsulated function block.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 66 of 66
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

5.4 Network Topology and Addressing
The aim is to create a system that largely configures itself (address assignment), transparently
supports any communication media, and can route packets between different networks. The routing
mechanism should be simple enough such that any node in the network, i.e. even nodes with low
resources, can reroute packets. In particularly this means that large routing tables, complex
calculations, or requests at runtime should be avoided.

5.4.1 Topology
A control network should generally be configured hierarchically, i.e. each node has one parent node
and any number of children. Cycles are not permitted, i.e. a control network has a tree structure.

Parent-child relationships arise from the specification of network segments. A network segment
corresponds to a local Ethernet or a serial point-to-point connection, for example. A distinction is made
between the main network (main net) and the sub-networks (subnet). Each node may have several
main nets as well as each main net may have several subnets. Each main net acts as a parent for the
attached subnets.

If the same network segment was simultaneously defined as a subnet of several nodes, the network
would have several parents. This is an invalid configuration, since each network segment can only
have one parent.

A node without parent is referred to as top-level node.

5.4.2 Addressing and routing
Addresses map the topology of a control network to unique addresses.

Node addresses are structured hierarchically. Each network connection is allocated a local address
by the relevant block driver through which the node is unambiguously identified in the respective
network. The node address is now formed by first appending the index of the subnet (in the parent) in
which the node is located then subsequently the local address of the main network connection to the

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 67 of 67
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

address of the parent. A node without main network is a top-level node with address 0. A node with a
main network that does not contain a parent is assigned its local address in the main network.

Due to the address structure the routing algorithm can be kept relatively lean. No routing tables are
required. The only requirement is local information about the own address and the address of the
parent node:

• Target address identical to own address?  Current node is receiver

• Target address starts with own address?  Packet is intended for a child or descendant of the
node. Forward to associated child node.

• Otherwise: Packet is not a descendant of the current node.  Forward to own parent.

Relative addresses are a special feature. They do not contain the node number of the receiver node,
but directly describe the path from the sender to the receiver. The principle is similar to a relative path
in the file system: The address is comprised of the number of steps the packet has to move “up”, i.e. to
the next respective parent, and the subsequent path down to the target node.

The advantage of a relative address is that two nodes within the same sub tree can continue to
communicate if the whole subtree is moved to another position within the overall control network. While
the absolute node addresses change during such a move, the relative addresses are preserved.

5.4.2.1 Parallel routing
Parallel routing represents a direct communication mechanism between two router instances on the
same node. It is used when there are at least two networks on the same node that should not end up in
a main net - subnet relationship (E.g. a PC with two network cards on independent Ethernet
segments).

The "ReceiverAdr" (see chapter 5.5) of an incoming packet is screened by the receiving router
instance for a special marker identifying a parallel router on the same node. If this marker exists, both
"ReceiverAdr " and "SenderAdr" are updated by the receiving router:

• The existing marker will be removed from the incoming "ReceiverAdr".

• A new marker will be added to the "SenderAdr" for identifying the current router.

If the new "ReceiverAdr" is identical to the address of the parallel router, the acting node is the correct
recipient and the packet will be handled locally. If not, the packet will directly be sent to the other
network segment to be handled there by a different node.

5.4.3 Address determination
In order to be able form its own address, each node must know the address of its parent node or
detect that it is a top-level node. To this end it sends an address determination message as a
broadcast to its main network during bootup. The parent node responds with an address notification.
The node then passes on the modified address to its subnet. Until it receives a response to the
address determination message the node considers itself to be a top-level node, although it will
continue to try and detect a parent node at suitable intervals.

Address determination can be executed at bootup or when requested by the programming PC.

Once the address of a node is frozen, no further address determination is required. An address
notification by the parent node with an address that differs from the stored address should be regarded
as a fault.

5.4.4 Address structure

5.4.4.1 Network addresses
Network addresses represent a mapping of the addresses of a network type (e.g. IP addresses) to a
logical address within a control network. This mapping is handled by the respective block driver. Within
an Ethernet with Class C IP addresses the first 3 bytes of the IP address are identical for all network
devices. The last 8 bits of the IP address therefore suffice as network address, since they enable
unambiguous mapping between the two addresses at the block driver.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 68 of 68
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

A node has separate network addresses for each network connection. Different network connections
may have the same network address, since this address only has to be unique locally for each network
connection.

Terminology: In general, the network address of node without statement of the network connection
refers to the network address in the main network.

The length of a network address is specified in bits and can be chosen by the block driver as required.
Within a network segment the same length must be used for all nodes. A network address is
represented as an array of bytes with the following coding:

• Length of the network address: n bits

• Required bytes: b = (n + 7) DIV 8

• The (n MOD 8) lowest-order bits of the first byte and all remaining (n DIV 8) bytes are used for
the network address.

5.4.4.2 Node addresses
The node address indicates the absolute address of a node within a control network and is therefore
unique in the whole “tree”. It consists of up to 15 address components, each consisting of two bytes.
The lower a node is located within the network hierarchy, the longer its address.

The node address is comprised of the partial addresses of all predecessors of the node and the node
itself. Each partial address consists of one or several address components. The length is therefore
always a multiple of two. The partial address of a node is formed from the network address of the node
in its main network and the subnet index of the main network in the parent node. The bits required for
the subnet index are determined by the router of the parent node. Filler bits are inserted between the
subnet index and the network address in order to ensure that the length of the partial address is a
multiple of 2 bytes.

Special cases:

• Node has no main network: This means there is no subnet index nor a network address in
the main network. In this case the address is set to 0x0000.

• Node with main network but without parent: In this case a subnet index with 0 bit length is
assumed. The partial address corresponds to the network address, supplemented with filler
bits if required.

Example for network address coding:

• Length: 11 bits

• Address: 111 1000 1100

Reserved (0)

Byte 0 1
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 1 1 1 1 0 0 0 1 1 0 0

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 69 of 69
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

The node address representation is always hexadecimal. The individual address components (two
bytes in each case) are separated by a “:” (colon). The bytes within a component appear sequentially
without separator (see example above). Since this represents a byte array and not a 16-bit value, the
components are not displayed in little-endian format. For manually entered addresses missing digits in
an address component are filled with leading zeros from the left: “274” = “0274”. To improve readability
the output should always include the leading zeros.

5.4.4.3 Absolute and relative addresses
Communication between two nodes can be based on relative or absolute addresses. Absolute
addresses are identical to node addresses. Relative addresses specify a path from the sender to the
receiver. They consist of an address offset and a descending path to the receiver.

The (negative) address offset describes the number of address components that a packet has to be
handed upwards in the tree before it can be handed down again from a common parent. Since nodes
can use partial addresses consisting of more than one address component, the number of parent
nodes to be passed is always = the address offset. This means that the demarcation between parent
nodes is no longer unambiguous, which is why the common initial part of the addresses of the
communication partners is used as parent address. Each address component is counted as an upward
step, irrespective of the actual parent nodes. Any errors introduced by these assumptions can be
detected by the respective parent node and must be handled correctly by the node.

On arrival at the common parent the relative path (an array of address components) is then followed
downwards in the normal way.

Formal: The node address of the receiver is formed by removing the last AdressOffset components
from the node address of the sender and appending the relative path to the remaining address.

Example:
Node A: a.bc.d.ef.g
Node B: a.bc.i.j.kl.m
 Address of the lowest common parent: a.bc
 relative address from A to B: -4/i.j.kl.m

To ensure that the routing works correctly, the relative address must be adjusted with each pass
through an intermediate node. It is sufficient to adjust the address offset. This is always done by the
parent node: If a node receives a packet from one of its subnets, the address offset is increased by
the length of the address component of this subnet. If the new address offset is < 0 the packet must be
forwarded to the parent node. If the address offset >= 0 the packet must be forwarded to the child node
whose local address is located at the position described by the address offset within the relative
address. First, the address offset must be increased by the length of the local address of the child
node to ensure that the node sees a correct address.

A

Main network

Network address: 0x274 (12 bits)

Length of subnet index: 4 bits
0 1

B

Main network

Network address: 0x10C, length 17 bits

Partial address of B:

0x1000010C:

Node address of B: 0274 : 1000 : 010C

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0

Index Reserved (0) Network address (17 bits)

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 70 of 70
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

A special case is created by a situation in which the above described error occurs when the common
parent is determined. In this case the address offset at the “real” common parent is negative, but the
magnitude is greater than the length of the partial address of the subnet from which the packet
originates. The node must detect this case, calculate the local address of the next child node based on
the address of the previous node and the length difference, and adapt the address offset such that the
next node sees a correct relative address. Here too the address components themselves remain
unchanged, only the address offset changes.

5.4.4.4 Broadcast addresses
There are two types of broadcast - global and local. A global broadcast is sent to all nodes within a
control network. The empty node address (length 0) is reserved for this purpose.

Local broadcasts are sent to all devices of a network segment. For this purpose, all bits of the
network address are set to 1. This is possible both in relative and in absolute addresses.

A block driver must be able to handle both broadcast addresses, i.e. empty network addresses and
network addresses with all bits set to 1 must be interpreted and sent as broadcast.

5.5 Router Communication
A router packet consists of a header and the actual message (data). The length of the header is
variable, since node addresses have different lengths. Irrespective of this the data always start at a 4-
byte limit within the packet. Correct alignment is therefore always ensured, provided the data are
structured accordingly.

The following diagram illustrates the header structure:

• HC/AdrOff: Depending on the hop count addressing type hop count (direct addresses) or the

address offset (relative addresses)

• HL: Length of the static header in words. Corresponds to the offset of ReceiverAdr. Currently
3, i.e. 6 bytes.

• AdrType: 0 for direct addresses, 1 for relative

• Prio: Packet priority: 0 low, 1 normal, 2 high, 3 emergency. Packets with higher priority are
given preference by routers.

• SR: SignalRouter. Is set by a router to indicate en error (e.g. block size).

• BlkLenMax: Field for maximum block length. The maximum block length is calculated as
(BlkLenMax+ 1)*32. ( 0: 32 bytes, 1: 64 bytes, 2: 96 bytes, ..., 15: 512 bytes)

• ServiceId: A kind of port number for the called service.

• MessageId: Is set by the sender. Is used for identification of a message, detection of
duplicates for unsecured services, etc.

• SL: Length of the sender address in words

• RL: Length of the receiver address in words.

0

4

…

…

ID 0xC5 HC/AdrOff

8 bit 5 bit

HL

3 bit

ServiceId

AdrType
1 bit

4 bit 2 bit

BlkLenMax

8 bit

SL RL ReceiverAdr …

… SenderAdr [filler word (0x0000) optional]

MessageId

SR
1 bit Prio

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 71 of 71
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• Filler word: 0. Is inserted if SenderAdr does not end at a 4 byte-limit, in order to align the user
data with a 4-byte limit.

 Minimum packet length (both addresses one word, no content): 12 bytes

5.5.1 Hop count
This field is initialized to 31 (the maximum number of nodes that a packet has to pass through when
the network reaches the maximum depth of 15). Each node that forwards a packet reduces the value
of this field by 1. Once the field value has reached 0 the packet can no longer be forwarded. The field
also has to be decremented for broadcasts that are forwarded to subnets.

This mechanism offers reliable protection from broadcast floods and infinite packet loops, both for
cycles and in the event of misconfiguration.

5.5.2 Router signaling
This header flag identifies a message as a router message. If a router is unable to deliver a message
due to particular circumstances, it generates a new message that is sent back to the sender of the
original message, which sets the router flag. The service ID is taken from the undelivered packet, while
bit 0 is toggled. A request thus becomes a response and vice versa (see 3.6.2). With separate
client/server implementation of a service this ensures that the sending component receives the
message back.

A router message contains the complete header of the discarded packet. It also contains an ErrorId of
the router and further, error-dependent information. The original sender then forwards the packet to the
corresponding service as usual. Via a “MessageId” header field, which is generated by the service
when a message is sent, the returned message can be assigned to a current request. The router can
first analyze the error itself and adapt internal information as required (e.g. the maximum block length
for a particular transmission route).

If a message with active router flag cannot be delivered it is discarded without generating a further
router message, in order to avoid endless message floods.

Possible router messages:
BLOCKLEN_OVERRUN: Maximum block length for a transmission route exceeded.
INVALID_SUBNET: The subnet for the next node does not exist.
INVALID_NODE: Node does not exist (not detectable for all block drivers).
CONGESTION: Next transmission route blocked, but return channel is available.
INVALID_SERVICE: The specified ServiceId is not used on the target computer.

5.5.3 Variable maximum block length for a transmission route
Not all block drivers can send up to 512 bytes (the maximum size of a router packet) in once piece.
With many transmission protocols 512 bytes no longer fit into 1, 2, .. frames, which means that for
each packet an additional, almost empty frame would have to be generated and sent, resulting in
useless overhead. This problem may arise for any fixed block length. Shorter block lengths may
therefore be selected, depending on the transmission route (in steps of 32 bytes).

A field in the Level 3 header is reserved for the maximum block length of the transmission route. In the
absence of further information this field is initialized with 512 bytes. Each router checks whether the
next transmission route has a smaller block length (information from block driver) and updates the field
as required. The header of the receiver then contains the smallest maximum block length for the whole
communication path. If a packet cannot be forwarded due to excessive block length, it is discarded and
the problem is reported to the sender via the signaling mechanism ( 5.5.2).

Router components should remember the values determined in this way, at least for the last
communication partners. Since the first packets between two end points are generally relatively small
packets (e.g. connection setup, network scan, ...) no packets should have to be discarded due to this
mechanism during normal operation.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 72 of 72
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

5.5.4 Multiple router instances
Routers are Instantiable, i.e. for each device several router instances can exist simultaneously. Each
router exclusively manages part of the block drivers, i.e. there is no joint block driver access. Each
router instance has its own main network configuration, and therefore has its own address and forms
its own (partial) network. There is no provision for direct routing between router instances.
Consequently, a router instance always has to be specified in order to be able to send network
packets. Router instances are given a name for identification and are addressed via an Id.

In order to keep the configuration simple, a default router is available that can be used for standard
communication. Further routers are available for redundant network connections, service channels etc.

The default configuration of a router comprises a main network connection but no subnets. Subnets
have to be configured explicitly in order to avoid problems.

5.6 Layer 3 Services
In addition to the Layer 4 handler various other services are based on Layer 3 that are addressed via
protocol numbers (ServiceId field in the router header). Each of these services uses two protocol
numbers - one for the requesting the service, the second one for responses. The two numbers differ in
the lowest-order bit: for requests this bit is set, for responses the bit is deleted.

When defining such a service certain specifications should be followed. A service packet always
consists of a fixed header and user data. In order to ensure expandability, the first two bytes specify
the length of the header (= user data offset). Extensions must be designed such that older services
can handle more recent packets and vice versa.

In order to enable communication between different systems, the byte order is always little-endian. In
addition, all fields are based on natural alignment. Structures, particularly user data, always start at 4-
byte boundaries (filler byte must used if necessary).

The following service groups are defined:

Req/Reply Associated service
1 / 2 Address service

3 / 4 Name service (name resolution, network scan, ...)

5 / 6 Network variables

63 / 64 Channel management (Layer 4)

5.7 Gateway and client
As a minimum, a gateway consists of the standard communication stack and an additional gateway
component. This makes the gateway into a network node. In principle, each node can be extended to a
gateway by integrating this component. A runtime system can also take on the role of a gateway. Via a
special gateway protocol this component provides external clients with access to nodes within the
network, in which case communication is via the gateway instead of the client. The gateway has no
other special role within the network. A network can therefore have any number of gateways, and the
gateway can be positioned anywhere in the network. Two positions are particularly suitable in order to
avoid unnecessary bandwidth problems:

- As top-level node: In general this is where the network with the highest bandwidth is located. In
addition, access to all branches involves the same level of complexity.

- Near the target system: This solution is particularly suitable if the gateway is mainly intended
for a particular subnet that may be connected to the rest of the network via low (available)
bandwidth.

If more clients can communicate with a target system than the number of channels the system can
make available on Layer 4, the gateway can multiplex the requests for different clients on one channel.
To this end the gateway opens a single channel for all clients and sends requests to the clients in turn,
waits for the reply, sends the next request, etc. While this technique slows down communication of the

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 73 of 73
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

individual clients to some extent, for sporadic requests it uses significantly less resources in the target
system.

Common clients are tools for programming (e.g. CODESYS itself), visualization, remote diagnostics,
etc. The main feature of a client is that it is generally only connected to the network on a temporary
basis. In addition, a client is always the active communication partner, i.e. a node will usually not
establish communication with, but only respond to requests from a client.

The communication between client and gateway is based on communication drivers. In contrast to
communication between block drivers this communication is connection-oriented. In addition there is
no (direct) limitation of the maximum packet sizes. However, since the main part of the communication
is forwarding of Layer 7 packets, the packet size is effectively limited by the negotiated size of the
communication buffer plus administrative data.

Gateway requests include the following components:

- Network scan: From the scan the gateway generates a request for the name service and
supplies all the nodes available in the network as response.

- Address services: Including services for disabling automatic address assignment (“freezing” of
addresses), initiation of address assignment, etc.

- Layer 4 services: Setup and removal of a channel, sending of packets via this channel. By
default the content and structure of these packets (e.g. monitoring request) is not known to the
gateway. It merely forwards these packets to the associated receiver without interpreting them.

- Diagnostics and administration of the gateway itself.

- …

These services can be extended as required.

A basic client implementation is available for clients (GWClient), that covers communication with the
gateway, integration of the communication drivers, etc. Specific clients should use this library in order
to avoid getting bogged down in details of the communication with the gateway.

5.8 Implementation Aids

5.8.1 Implementation of own block driver
Block drivers are structured symmetrically, i.e. usually there is no distinction between a client or a
server. If associated system components for abstraction of operating system and hardware details are
used, an implementation that can be used on all platforms is generally sufficient.

An overview of the implementation of a block driver is provided below. For an actual implementation
the comments provided in the Itf files must be taken into account, particularly with regard to data
consistency and buffer administration.

5.8.2 Interface
A block driver is an ordinary component within the CODESYS runtime system. It has no dedicated
component manager interface. Instead it registers each network interface it manages (e.g. each
Ethernet card) with the router component using the RouterRegisterDevice function. The associated
function prototype is shown below (from CRouterItf.h):

RTS_RESULT CDECL RouterRegisterNetworkInterface(NETWORKINTERFACEINFO
*pInterfaceInfo, RTS_HANDLE * phSubnet);

typedef struct
{
 PFBDSEND pfBDSend;
 /* pointer to the blockdrivers send method */
 RTS_HANDLE hInterface;
 /* Interfacehandle within the block driver. This handle is

 passed to all calls to the block driver */

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 74 of 74
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 int nMaxBlockSize;
 /* The maximum size of a block that may be sent over this

 device. */
 int nNetworkAddressBitSize;
 /* Number of bits occupied by an address of this driver */
 int bServiceChannel;
 /* If TRUE, this device provides a service channel. */
 NETWORKADDRESS addrDevice;
 /* address of the device within it's subnet (CAN-Node ID, etc.)

 */
 char szName[MAX_INTERFACE_NAME];
 /* human readable name of the device. Must be unique. */
 /* Could be something like "eth0" or "Ethernetcard #1" */
} NETWORKINTERFACEINFO;

typedef RTS_RESULT(*PFBDSEND) (RTS_HANDLE hInterface, NETWORKADDRESS

addrReceiver, PROTOCOL_DATA_UNIT pduData);

- pfBDSend is a function that is called by the router in order to forward a block (pduData) to the
next relevant node (addrReceiver).

- hInterface identifies the relevant network interface in the block driver, if the driver manages
several interfaces simultaneously. The Id is assigned by the block driver and is transferred
whenever pfBDSend is called.

- nMaxBlockSize is the maximum size of a block that can be sent via this interface.

- nNetworkAddressBitSize is the number of bits required for a network address on this interface.

- addrDevice is the local address of the network interface.

- szName is the name of the interface as displayed to the system user. This name is also used
to configure the main network and the subnets.

- phSubnet is assigned by the router and identifies the interface in the router. When the block
driver receives a block and forwards it to the router it must also forward this Id (see below).

When the block driver receives a correct block on one of its network interfaces, it notifies the router via
the RouterHandleData function. The function prototype is (again from CRouterItf.h):

RTS_RESULT CDECL RouterHandleData(RTS_HANDLE hSubnet, NETWORKADDRESS
sender, PROTOCOL_DATA_UNIT pduData, int bIsBroadcast);

- hSubnet must be the Id assigned by the router on interface registration.

- sender is the network address of the sender.

- pduData contains the received block

- bIsBroadcast should set to 1, if the received block was sent to a broadcast address.

5.8.3 Addressing
The block driver has as many bits available for network addresses as it specified on registration with
the router. A network address in which all bits are set to 1 is reserved as a broadcast address. The
same applies to a network address of length 0. Blocks for these addresses therefore have to be
distributed to all subnet devices.

An example: Addressing in the UDP block driver

An IP address consists of four components <a>..<c>.<d>. In a Class C network the first three
components are identical for all devices. Therefore only the last byte (d) is used for the network
address, i.e. 8 bits are sufficient. Blocks for 0xFF are sent to address <a>..<c>.FF (local broadcast
within the network).

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 75 of 75
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

5.8.4 General implementation procedure
A simple block driver simply responds to associated system hooks and polls its network interfaces at
regular intervals. Faster response times can be achieved if the block driver responds directly to events
in its network hardware. This aspect is not covered in this documentation. As reference implementation
we recommend BlkDrvUdp (supplied with the runtime system).

Once addressing has been specified (see 5.8.3), a send function must be implemented based on the
PFBDSEND function prototype. It should return the following values:

- ERR_OK if the block could be sent or at least copied to an internal buffer

- ERR_NOBUFFER if the block could not be sent immediately and no internal buffer is available
for intermediate data storage. During the next cycle the router will try sending the block again.

- ERR_FAILED if an error, such as an invalid address, for example, permanently prevents a
block being sent. In this case the router will discard the block.

The block driver should initialise its network interfaces in the CH_Init hook and register them with the
router.

In the CH_CommCycle hook the block driver should continue resending blocks that were not sent
completely and check whether a new block was received. If a block was received it must be forwarded
to the router via the RouterHandleData function.

5.8.5 Synchronisation
In principle the send function of the block driver can be called from different threads. It is therefore
important to ensure adequate and correct synchronisation.

Critical code components should be secured through suitable semaphore or similar mechanisms. It is
particularly important to ensure that a call of RouterHandleData can initiate another send operation.
Deadlocks must be avoided. Before a RouterHandleData call all semaphores should therefore be
enabled if possible.

In single-tasking systems the semaphore mechanisms of the system libraries have been route-
optimized and are therefore irrelevant for performance considerations.

5.9 Implementation of Own Communication Driver
In contrast to block drivers communication drivers are structured asymmetrically, i.e. there is a clear
distinction between a client (on the client side) and a server (on the gateway side). The transfer
perspective is also different from that of block drivers: While block drivers invariably send or receive
whole blocks or nothing, communication drivers provide an “endless” data stream. Communication
drivers therefore do not deliver received data directly to the gateway/client. Instead they report receipt
of the data, which can then be retrieved by the higher-level layer in freely selectable portions as
required.

The fundamental principle of the send and receive functions is the same on both sides. However, the
client must be able to actively establish a connection to the server, while server has to respond to
incoming client connections. In addition the client must support a plug-in mechanism for generic
configuration of the connection.

Both sides make a secure stream available. Data may be sent and delivered in portions of any size.
The only requirements are that the data must arrive at the receiver correctly, fully and in the right order.
If necessary the communication driver must deal with packet repetition, checksums etc. If data are not
retrieved fast enough from the driver, suitable flow control mechanisms should be provided to avoid
data loss. If data have to be discarded or cannot be transferred correctly, the connection must be
terminated since it violates the stream principle. In addition the communication driver should be able to
detect connection interruptions independently.

A normal TCP connection precisely meets the requirements of communication drivers and can
therefore be regarded as reference.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 76 of 76
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

5.9.1 Communication driver for the gateway
The communication driver for TCP, CmpGWCommDrvTcp, should be regarded as reference
implementation.

In its CGateway.h interface the gateway component provides four functions for operation by a
communication driver:

- GWRegisterCommDrv
For registration of a communication driver with the gateway.

- GWClientConnect
Notifies the gateway about the fact that a new connection with a client was established.

- GWClientDisconnect
Notifies the gateway about the fact that a connection to a client was terminated.

- GWConnectionReady
This callback notifies the gateway about the fact that new data can be received via a
connection or now further data can be sent.

These functions are described in more detail below.

int CDECL GWRegisterCommDrv (COMMDRVINFO *pInfo,
 unsigned long *pdwDriverId);
typedef struct
{
 PFCOMMDRVSEND pfSend;
 PFCOMMDRVRECEIVE pfReceive;
 PFCOMMDRVCLOSE pfClose;
} COMMDRVINFO;

typedef int (CDECL *PFCOMMDRVSEND)(unsigned long dwConnHandle,
 PROTOCOL_DATA_UNIT data,
 unsigned long *pdwSent);
typedef int (CDECL *PFCOMMDRVRECEIVE)(unsigned long dwConnHandle,
 PROTOCOL_DATA_UNIT *pData);
typedef int (CDECL *PFCOMMDRVCLOSE)(unsigned long dwConnHandle);

This function is used by a communication driver for registering at a gateway. In pInfo the driver passes
on three function pointers for sending and receiving data and for terminating an existing connection.
pdwDriverId is set by the gateway and must be passed to the gateway with all further calls as driver
identification.

- PFCOMMDRVSEND:
Sends data (data) via an existing connection (dwConnHandle). pdwSent must be set by the
communication driver to the number of bytes that were actually sent (or copied to the internal
send buffer). If not all bytes could be sent, the gateway will resent the unsent data during the
next cycle.

- PFCOMMDRVRECEIVE
Reads data for a connection (dwConnHandle) from the receive buffer of the communication
driver. During a call pData->ulCount contains the maximum number of data to be read.
Existing data have to be copied to pData->pBuffer, and pData->ulCount has to be set to the
number of actually read data.

- PFCOMMDRVCLOSE
Closes a connection (dwConnHandle). GWClientDisconnect must not be called.

For all three functions the following applies:

The function must not block and must not call gateways functions (either directly or indirectly), because
this may lead to deadlocks that cannot be rectified!

int CDECL GWClientConnect(unsigned long dwDriverId,
 unsigned long dwConnHandle);

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 77 of 77
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

This function is called by the communication driver once it has established an incoming connection
from a client. dwDriverId identifies the communication driver and was returned by the gateway at
GWRegisterCommDrv. dwConnHandle is a driver-specific handle for the new connection and is
transferred by the gateway for send, receive and close calls.

int CDECL GWClientDisconnect(unsigned long dwDriverId,
 unsigned long dwConnHandle);

This function is called by the communication driver if a connection to a client was cancelled or
terminated by the client. dwDriverId identifies the communication driver and was returned by the
gateway at GWRegisterCommDrv. dwConnHandle is the driver-specific handle for the terminated
connection, which the driver had transferred at GWClientConnect.

int CDECL GWConnectionReady(unsigned long dwDriverHandle,
 unsigned long dwConnHandle,
 int nAction);

This function can optionally be called by the communication driver (dwDriverHandle) if new data are
available for a connection (dwConnHandle) or data can be sent. nAction can have one of the following
values:

- COMMDRV_ACTION_SEND
There are free send buffers, i.e. data can be sent again.

- COMMDRV_ACTION_RECEIVE
New data are available in the receive buffer.

The same condition should not be signaled more than once per connection as long as the gateway has
not responded. After a COMMDRV_ACTION_SEND for instance, this signal may only be triggered
again after a send on this connection.

5.9.2 Communication driver for the client
The communication driver for TCP, in this case CmpGWClientCommDrvTcp, should be regarded as
reference implementation.

In its CGWClientItf.h interface a client provides two functions for interaction with communication
drivers:

- GWClientRegisterCommDrv
To register a communication driver

- GWClientConnectionReady
Notifies the client that new data are available or the driver is ready again to send data.

int CDECL GWClientRegisterCommDrv(COMMDRVITF *pItf,
 COMMDRVINFO *pDrvInfo,
 unsigned long *pdwDriverHandle);
typedef struct
{
 PFCOMMDRVBEGINCONNECT pfBeginConnect;
 PFCOMMDRVENDCONNECT pfEndConnect;
 PFCOMMDRVSEND pfSend;
 PFCOMMDRVRECEIVE pfReceive;
 PFCOMMDRVCLOSE pfClose;
}COMMDRVITF;

typedef int (CDECL *PFCOMMDRVSEND)(unsigned long dwConnHandle,
 PROTOCOL_DATA_UNIT data,
 unsigned long *pdwSent);

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 78 of 78
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

typedef int (CDECL *PFCOMMDRVRECEIVE)(unsigned long dwConnHandle,
 PROTOCOL_DATA_UNIT *pData,
 unsigned long dwReceive);
typedef int (CDECL *PFCOMMDRVBEGINCONNECT)(PARAMLIST *pParams,
 unsigned long *pdwConnHandle,
 ASYNCRESULT *pAsyncRes);
typedef int (CDECL *PFCOMMDRVENDCONNECT) (ASYNCRESULT *pAsyncRes,
 unsigned long *pdwConnHandle);
typedef int (CDECL *PFCOMMDRVCLOSE)(unsigned long dwConnHandle);
typedef struct tagASYNCRESULT
{
 void *pUser;
 PFASYNCCALLBACK pfCallback;
 unsigned long ulEvent;
 unsigned long ulRequestId;
}ASYNCRESULT;
typedef void (STDCALL *PFASYNCCALLBACK)(ASYNCRESULT *pAsyncRes);

The GWClientRegisterCommDrv function registers a communication driver with the client.
pdwDriverHandle is set by the client and must be passed on by the communication driver to the client
with all other calls. pItf contains function pointers to the communication driver functions, while pDrvInfo
contains information about the driver itself and about the parameters required for establishing a
connection.

Functions required for pItf:

- PFCOMMDRVSEND
Sends data (data) via an existing connection (dwConnHandle). pdwSent must be set by the
communication driver to the number of bytes that were actually sent (or copied to the internal
send buffer). If not all bytes could be sent, the client will resent the unsent data during the next
cycle.

- PFCOMMDRVRECEIVE
Reads data for a connection (dwConnHandle) from the receive buffer of the communication
driver. During a call pData->ulCount contains the maximum number of data to be read.
Existing data have to be copied to pData->pBuffer, and pData->ulCount has to be set to the
number of actually read data.

- PFCOMMDRVBEGINCONNECT
This function initiates a connection setup. The parameter pParams is described in Section
5.9.2.1, Connection parameters. This function is blocking if pAsyncRes == NULL. Otherwise
this function must be non-blocking. Two cases can be distinguished:

o pAsyncRes != NULL and connection cannot be established immediately
The function returns ERR_PENDING, pdwConnHandle is not touched. The function
initializes the following fields of pAsyncResult: ulEvent is assigned a handle for a
SysEvent; ulRequestId can by used by the function as required for identifying this
asynchronous request.
The connection now has to be established in the background (e.g. in
CH_COMMCYCLE or in a dedicated thread). As soon as the connection has been
established or failed the driver sets ulEvent. If pAsyncRes->pfCallback != NULL, the
driver calls this callback function.
The caller of the function can call the function PFCOMMDRVENDCONNECT at any
time, generally in pAsyncRes->pfCallback or after pAsyncRes->ulEvent was set, in
order to retrieve the result of the connection setup.
The driver may not remember the pointer to pAsyncRes. Instead it usually retains a
copy of *pAsyncRes. pAsyncRes->pUser is set by the caller and is not touched by the
driver.

o Otherwise:
pAsyncRes is not touched. The function blocks until the connection setup result is
known. If successful, pdwConnHandle is set to the handle of the new connection,
otherwise the function returns the associated error code.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 79 of 79
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

- PFCOMMDRVENDCONNECT
This function returns the result of a previous asynchronous call of
PFCOMMDRVBEGINCONNECT. It must be called exactly once if the asynchronous call
returned ERR_PENDING. In all other cases, including multiple calls, an error is returned.

The function blocks until asynchronous connection setup is complete, identified through
pAsyncRes->ulRequestId. It then returns the result in the same form as
PFCOMMDRVBEGINCONNECT in the synchronous case.

- PFCOMMDRVCLOSE
Closes a connection (dwConnHandle).

The data required in pDrvInfo are described in 5.9.2.1, Connection parameters.

int CDECL GWClientConnectionReady(unsigned long dwDriverHandle,
 unsigned long dwConnHandle,
 int nAction);

This function can optionally be called by the communication driver (dwDriverHandle) if new data are
available for a connection (dwConnHandle) or data can be sent. nAction can have one of the following
values:

- COMMDRV_ACTION_SEND
There are free send buffers, i.e. data can be sent again.

- COMMDRV_ACTION_RECEIVE
New data are available in the receive buffer.

The same condition should not be signaled more than once per connection as long as the client has
not responded. After a COMMDRV_ACTION_SEND for instance, this signal may only be triggered
again after a send on this connection.

5.9.2.1 Connection parameters
A connection to a gateway has to be parameterized in different ways, depending on the communication
driver. A TCP connection, for example, requires the IP address and the port of the remote terminal,
while a serial connection requires the COM port, baud rate, stop bits etc. The required parameters are
therefore specified by the driver itself. Since the driver handle may change depending on the installed
drivers, each driver is allocated a unique number that also unambiguously identifies the driver, even on
different computers.

The driver therefore describes itself with the parameter pDrvInfo on registration. This structure is
defined as follows:

typedef struct
{
 COMMDRIVERHANDLE hDriver;
 GUID guid;
 wchar_t *pwszName;
 PARAMDEFLIST params;
}COMMDRVINFO;

typedef unsigned long COMMDRIVERHANDLE;

typedef struct
{
 int nNumParams;
 PARAMETERDEFINITION *pParam;
}PARAMDEFLIST;

typedef struct
{
 wchar_t pwszName[MAX_PARAM_NAME+1];
 unsigned long dwParamId;

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 80 of 80
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 unsigned long dwType; /* PT_xxx */
}PARAMETERDEFINITION;

hDriver is set by the client. This parameter is independent of the driver. guid is a GUID, as generated
by the guidgen tool from Microsoft, for example. The GUID must be recreated for each driver. It
identifies the driver across different client instances. pwszName is the name of the driver. It is
displayed in the configuration dialog of the client, for example. params defines the parameters required
for connection setup for this driver. These parameters are also displayed in the generic configuration
dialog of the client. Suitable names should therefore be chosen.

PARAMDEFLIST is a list of parameters required for the driver. It includes the number of required
parameters (nNumParams) and an array of nNumParams parameter definitions (pParam).

A PARAMETER DEFINITION describes an individual parameter through a name (pwszName), Id
(dwParamId, must be unique within the driver), and type. Types are defined by PT_xxx (e.g.
PT_CHAR, PT_INT16, PT_string, ...) constants in file CGWClientItf.h. All common numeric data types
and strings are available.

An example:

The communication driver for TCP requires two parameters. One IP address parameter with Id 0 that
either contains the address or the DNS name of the gateway as a string, and one Port parameter, a
16-bit value with Id 1 that specifies the port for the gateway. The parameter array for the definition has
the following structure:

static PARAMETERDEFINITION s_ParamDefinitions[] =
{
 {L"IP-Address", (unsigned long)0, (unsigned long)PT_string},
 {L"Port", 1, PT_uint16}
};

From this list the client generates a parameter list (pParams) during connection setup
(PFCOMMDRVBEGINCONNECT) containing specific values for the individual parameters. The values
are transferred as pointers to the type corresponding to the parameter definition (short*, int*, ...).
Strings are transferred in the usual way as pointers to the first element of the string, i.e. as char*. The
parameter list is defined as follows:

typedef struct
{
 int nNumParams;
 PARAMETER *pParam;
}PARAMLIST;

typedef struct
{
 unsigned long dwParamId;
 unsigned long type;
 void * pValue;
}PARAMETER;

An example:

The following code establishes a connection to gateway 192.168.100.70 on port 1217 using the TCP
communication driver from the previous example. In the interest of transparency the configuration is
static in this case and uses the parameter definition of the communication driver described above. In
real applications the list is generated dynamically based on the user inputs and the parameter definition
of the driver.

int nResult;
unsigned long ulConnHandle;

ASYNCRESULT async = {NULL,NULL,0,0};

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 81 of 81
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

char stAddr[] = "192.168.100.70";
unsigned short usPort = "1217";
PARAMETER params[2] =
{
 {0, PT_string, stAddr}, /* stAddr is already a pointer */
 {1, PT_uint16, &usPort} /* numeric values as pointer on value */
}
PARAMLIST list = {2, params};

nResult = pfCommDrvBeginConnect(&list, &ulConnHandle, &async);
if(nResult == ERR_PENDING)
{
 CAL_SysEventWait(async.ulEvent, -1); /* Wait until finished */
 nResult = pfCommDrvEndConnect(&async, &ulConnHandle);
}

if(nResult == ERR_OK)
{
 /* Send and receive data */
 …
 pfCommDrvClose(ulConnHandle);
}
…

5.9.2.2 Implementation of BeginConnect
The following code snippet illustrates the basic structure of the CommDrvBeginConnect and
CommDrvEndConnect functions with correct handling of the pAsyncResult parameter. While other
implementations are conceivable and indeed often desirable, connection setup is always asynchronous
in the example. For the case pAsyncRes == NULL an additional short code snippet is included that
converts the asynchronous function into a synchronous function through the function
CommDrvBeginConnect recalling itself recursively and then blocking itself by calling
CommDrvEndConnect. In the synchronous case CommCycleHook may therefore be blocked. In this
implementation a separate thread must therefore be used for asynchronous connection setup.

int BeginConnect(PARAMLIST *pList, ulong *pdwHandle, ASYNCRESULT *pAsyncRes)
{
 int nRes;
 unsigned long ulReqId;
 if(pAsyncRes == NULL)
 {
 AsyncRes async = {NULL, NULL, 0, 0};
 nRes = BeginConnect(pList, pdwHandle, &async);
 if(nRes == ERR_PENDING)
 nRes = EndConnect(&async, pdwHandle);
 return nRes;
 }

 CheckParameters(pList); // All available? Correct types?

 ulReqId = StartAsyncConnect(pList);
 pAsyncRes->ulRequestId = ulReqId;
 pAsyncRes->ulEvent = SysEventCreate(LongToString(ulReqId));
 AddPendingRequest(*pAsyncRes);

 return ERR_PENDING;
}

int EndConnect(ASYNCRESULT *pAsyncRes, ulong *pdwHandle)
{
 Request req;
 req = GetPendingRequest(pAsyncRes->ulRequestId);
 if(req == NULL)
 return ERR_PARAMETER;
 SysEventWait(req.asyncRes.ulEvent, -1);

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 82 of 82
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 if(req.result == ERR_OK)
 *pdwHandle = req.handle;

 RemovePendingRequest(pAsyncRes->ulRequestId);

 return req.result;
}

/* Callback example. We assume that this function is called by the
network layer, for example, as soon as connection setup was either
completed or has failed.
 The function is intended to indicate driver behaviour required for
signaling the end of the asynchronous call to the client application.
*/
void OnConnectFinished(int reqId, int nResult, ulong ulHandle)
{
 Request req;
 req = GetPendingRequest(reqId);
 req.result = nResult;
 req.handle = ulHandle;
 SysEventSet(req.asyncRes.ulEvent);
 if(req.asyncRes.pfCallback != NULL)
 req.asyncRes.pfCallback(&(req.asyncRes));
}

5.10 Standard block drivers and their network addresses

5.10.1 Overview
This chapter uses an example to describe the formation of the network address for network adapters
based on different block drivers. For formation of the node address from this network address please
refer to chapter 5.4.4 Address structure.

5.10.2 UDP block driver
The UDP block driver does not define physical network connections as network connections, but uses
each available IP address of a system as a (virtual) network connection. For each such network
connection the block driver uses four predefined UDP ports. In the standard configuration they are
ports 1740, 1741, 1742 and 1743. The block driver uses precisely one of these ports for sending and
receiving data. It either uses the port specified by the configuration or the first free port if no port is
configured. The remaining ports are available for further runtime system instances on the same device.
The block driver sends broadcasts always to all four ports in the network.

The block driver operates on local network segments that have a common IP network address. The
network address is formed from the relevant bits of the IP address (i.e. without the network mask) and
the port index.

The diagram illustrates the address formation for the following configuration:

- IP address 172.17.69.104 (= AC.11.45.68 hexadecimal)

- IP network mask 255.255.248.0  i.e. only the last 11 bits of the IP address are relevant

- Port 1741, corresponds to port index 1 (1740 = 0)

- Since 2 bits are required for the port index, this configuration uses 13 bits, i.e. the top 3 bits of
the first byte remain unused. They can be used by the router for encoding the subnet ID, for
example.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 83 of 83
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

The following source code snippet generates this address from the IP configuration. Unfortunately
several special cases have to be covered that make the code a little difficult to read. The function
expects the relevant part of the IP address in dwLocalAddr, appends the 2-bit port index to
wPortIdxOffset, and finally converts the required bytes to a byte array in pnaResult.

static void CreateNetworkAddress(NETWORKADDRESS *pnaResult, RTS_UI32
dwLocalAddr, int iPortIdx, RTS_UI16 wPortIdxOffset)

/* dwLocalAddr = dwIpAddress & ~dwNetworkMask
 * wPortIdxOffset = <number of non-networkmask bits in the ip-address>
 */
{
 int i;
 RTS_UI16 wLocalAddrLen

/* wLocalAddrLen = Total number of bytes required for this network
 * address. PortIdxOffset equals the number of bits required for the
 * ipaddress, then adding 2 bits for the port index and finally
 * calculate the number of bytes, rounding up (“+7”)
wLocalAddrLen = (wPortIdxOffset + 2 + 7) / 8;

 /* Caveat:
 * We are shifting the portidx to the left in order to set the

 * matching bits within the dwLocalAddr. If 31 or even all 32 bits
 * of the ipaddress are used for the local address we need some
 * extra treatment, which is done after the for loop below. So

 * everything should work fine.
 * But if the portidx offset is 32 then (at least on x86 with VC6
 * compiler) the left shift is executed as a shift (i % 32)

 * effectively doing nothing, where zero should result.
 * In short: Expected (x << 32) == 0, but what we get is

 * (x << 32) == x.
 * Therefore we exclude that case in the next statement.
 */
 if(wPortIdxOffset < 32)
 dwLocalAddr = dwLocalAddr | (iPortIdx << wPortIdxOffset);

 pnaResult->nLength = wLocalAddrLen;
 for(i=wLocalAddrLen-1; i>=0; i--)
 {
 pnaResult->address[i] = (RTS_UI8)(dwLocalAddr & 0xFF);
 dwLocalAddr = dwLocalAddr >> 8;
 }
 if(wPortIdxOffset > 30)
 {
 pnaResult->address[0] = iPortIdx >> (32 - wPortIdxOffset);
 }

}

5.10.3 Serial block driver
The serial block driver is called CmpBlkDrvSimpleCom. The driver sends the following characters for
synchronisation of each data block:

• Block start delimiter: "#<"

• Block start delimiter: "#>"

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 84 of 84
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• Within a block each "#" is expanded to "#_"

Each block carries a 16 bit crc over the original data, stored in Intel byte order. Thus a block looks like
this:

<start delimiter>[<data><crc_highbyte><crc_lowbyte>]<end delimiter>

Data within [] is escaped to the above rule.

5.11 Modules
The communication stack is implemented in the following runtime system modules:

Modules Brief description

CmpRouter Implements the router layer

CmpBlkDrvUdp Block driver for communication via UDP

CmpChannelManager Basic channel management component

CmpChannelClient Client for the channel level

CmpChannelServer Server for the channel level

CmpSrv Application server (Layer 7)

CmpGateway Gateway component

CmpGWCommDrvTCP Gateway communication driver for TCP connections

CmpGWClientCommDrvTCP Client communication driver for TCP connections

CmpAddrSrvc Address assignment

CmpNameServiceClient Name service (client)

CmpNameServiceServer Name service (server)

5.12 Client API Interfaces
There are three different levels to enter the CODESYS V3 PLC network.

The lowest level is to enter the network in the runtime system itself. This is typically used, if you write
your own component and want to communicate with another plc.

The next level is the Gateway Client. This is typically used by a PlugIn in CODESYS or by CODESYS
itself.

The highest interface is the PLCHandler. It provides to enter the communication network from any
other proprietary client.

5.12.1 Channel client (CmpChannelClient)
The channel client component can be used from a component in the runtime system to enter the PLC
communication network. The channel client can be used to open the communication to another PLC
and to sent native online service though this channel.

5.12.2 Gateway client (GwClient)
The Gateway-Client has a native C++ interface, so it can be used from .NET and C++ clients (like
PlugIns in CODESYS). This interface provides to open the communication and to sent native online
service though this channel. In this layer, no symbolic access to variables in possible! To use symbolic
access, you have to use the PLCHandler interface.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 85 of 85
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

5.12.3 PLCHandler
This is the highest level API that is provided by 3S.

The PLCHandler is a C++-class which on a comfortable level provides services for the communication
between a client (e.g. visualization) and a 3S Automation-Alliance compliant PLC (controller).

The following features and services are available:

• Establishing and terminating the communication with the PLC

• Reading all variables on the PLC

• Cyclic reading of variables' values from the PLC

• Synchronous reading of variables' values from the PLC

• Synchronous writing of variables' values to the PLC

• Possibility of instancing for the purpose of a simultaneous communication with several PLCs

• Automatic reconnecting with the PLC after an break of the connection

• Automatic restart after a program download from CODESYS to the PLC

• Data transfer to and from PLC

Thus the PLCHandler can be used as a basic component for OPC Servers or visualizations. The
Handler is delivered as a SDK, i.e. all C++ header files, the static link library (PLCHandler.lib resp.
PLCHandlerComplete.lib) and a sample program (main.cpp) are part of the package.

The PLCHandler supports beneath the CODESYS V3 generation runtime systems additionally the
CODESYS V2.x generation runtime systems! So you only have to handle one interface for all runtime
systems in the field.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 86 of 86
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

6 Device- / I/O Configuration

As I/O configuration it is called the complete set of mechanisms, to support all hardware-devices and
I/O2

One of the main aims of the I/O-configuration in CODESYS V3 is internal standardization of the
different device types, so that different field bus nodes, internal I/Os, extension modules, drives, etc.
are basically treated in the same way. This means that each device is described with the identical
description structure. So a driver can interpret principally every device description.

 systems that are connected to a controller (the runtime system). This includes the description of
the hardware hierarchy, description and parameterization of each device and the support of each
device with a driver (I/O-driver).

The second main issue is that the I/O-configuration is created as an IEC data-structure and is
downloaded to the runtime system with the IEC application that includes the I/O-configuration.

If you want to access the I/O-configuration from another IEC application, this application must be a
child application of the application with the I/O-configuration.

In the following chapters, all themes to access devices and IOs are described in detail.

6.1 Graphical Configuration
The IO-configuration in CODESYS is organized as a tree of devices.

Figure 5: IO-configuration in CODESYS

The base node for the devices typically is a PLC (the runtime system; sometimes called target). In the
example above it is a windows runtime system with the name CODESYS_SP_for_Win32.

A PLC node specifies typically, which kind of devices can be appended under this node. For example
on a PC you can append (and physically plugin) PCI cards under this node. These appended devices
correspond to the hardware that is plugged and attached to the PLC.

2 I/O: Input- and Output-Signals (Digital- or Analog), e.g. Sensor Data

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 87 of 87
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

In the example above, a PCI Hilscher Profibus Master Card is appended under the PLC. Under the
Profibus Master there are Profibus Slaves to configure the complete field bus. This configuration
represents the physical structure of a hardware that is connected and attached on the PLC.

6.2 Devices
Devices represent, strictly speaking, hardware units that are relevant for the controller configuration.
They may be programmable devices (PLC), local I/O units, extension modules, field bus nodes, or bus
coupler modules. In a wider sense the term may also include functional hardware units that are
selectable or configurable by the user but have no direct hardware equivalent. Unless otherwise
specified, in the following sections the term device is used in this wider sense. With regard to the
device description and the interface both aspects are also treated equally.

Devices may be linked hierarchically. The possible combinations are defined in the respective
description files. The link points of the devices are referred to as Connectors. Connectors can either
take a Parent role or a Child role. Depending on the configuration, between 1 and n devices with
suitable child connectors can be attached to Parent connectors.
In diagrams the following symbols are used for illustration purposes: a device is represented by a large
rectangle. Smaller rectangles to the left of the device indicate child connectors, i.e. points where the
device can be attached to a parent node. The same type of rectangle on the right-hand side represents
parent connectors, i.e. possible connection points for children.

Figure 6: Logical structure of one device

6.3 Device Descriptions
To use a device in the device configuration tree in CODESYS, the device must be completely
described in XML (device description file). This includes the description of device parameters and
connectors. The device description file contains all information for:

• Getting inserted the device object at the correct position in the I/O-configuration tree

• Getting displayed and editable the device parameters in the user interface

• Optionally getting specified an I/O driver that operates the device

See in the following general information on connectors (chap. 6.3.1), parameters (chap. 6.3.2) and IO-
Mapping (chap. 6.3.3)

See Chap. 6.4 for information on particular device description file entries.

6.3.1 Connectors
Connectors form the connections between devices and have their own configuration data in the form of
a parameter set. So a device is fully described with a single child connector, one or more parent
connectors and a set of so-called parameters for each connector. Parameters hold the information to
configure a connector (e.g. baud rate of a Profibus master connector). An I/O-channel is described as
a parameter too.

Connectors can only be connected with each other if they have the same interface. Interfaces are
identified via a string. A manufacturer abbreviation used as a prefix for this string defines a namespace
and ensures uniqueness of the interface names across manufacturers. The “Common” namespace
contains generally used interfaces specified by 3S, e.g.:

Device X Child connector

Parent connectors

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 88 of 88
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

“Common.PCI”: Standard PCI connection

“Common.DP”: Profibus

“Common.CANopen”: CANopen network

Device manufacturers can define own (internal and external) interfaces within their namespace.

The interface initially only defines the type of devices that can be connected to a connector. More
control over the number of possible children and the representation is provided through the definition of
adapters within a parent connector. Three types of adapters are available:

• Fixed: Specifies that a certain child is always present.
This is used, for example, for hard-wired I/Os that the user cannot install or remove. The user
cannot remove these devices.

• Slot: Defines a slot as used in expandable controllers, for example. The number of slots is
fixed, while modules can be replaced or (optional) removed altogether, leaving an empty slot.

• Var: Defines an adapter to which any number of children (up to a specified upper limit) can be
connected and disconnected. This corresponds to the model of field bus to which new devices
can be added.

Each type has its own module Id so that an I/O driver can recognize the connector type in the runtime
system. The parameter profile for a certain module Id is predefined. The module Id must not be
confused with the interface type (see above). While in many cases there may be a unique assignment
between the module Id and the interface (e.g. for “Common.DP” the parent connector has module Id
32 and the child connector has Id 33), additional interfaces can be defined that are mapped to the
same module Ids. In this case the driver treats these devices in the same way, although they cannot be
combined with each other. This may be useful if a different physical interface is used internally for a
standard bus, for example (e.g. a special PCI connection). In this case only devices with this special
interface can be connected, even though it makes no difference for the driver.

The next diagram shows a PLC node (target) with a Profibus master, one modular slave with one input
and one output module as it is configured in a simple I/O-configuration:

Figure 7: Profibus configuration

In the figure above, all connectors are marked with a red color. Above the connectors you see the
logical number. The numbers are assigned from the top to the down position in the configuration tree.

As you can see, for example the Profibus master device is completely described with its child
connector (PCI), with its parent connector (Profibus) and with a parameter list for each connector.

The I/O-configuration is stored as one single list. The index in the list is the logical position in the tree.
To hold the tree information, every child connector contains a pointer to its father connector. So the
tree information can be restored out of the information in the list.

Internally, every connector is stored in the same structure (this is one entry in the list):

Profibus DP

PCI Profibus

Parameterlist

Tar
get Ma

ster

Sla
ve

I

O

0
1

2 3

4 5

6

7

PCI

Profibus

Module bus

I/O
h l

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 89 of 89
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Element IEC Data type

Connector Type:
#define CT_PROGRAMMABLE 0x1000
#define CT_SAFETY 0x1002
#define CT_DRIVE 0x1003
#define CT_PARAMETRIZABLE 0x1004
#define CT_HMI 0x1005
#define CT_SOFTMOTION_CONTROLLER_3S 0x1006
#define CT_GATEWAY_3S 0x1007

#define CT_CAN_MASTER 0x0010
#define CT_CAN_SLAVE 0x0011
#define CT_CAN_DEVICE 0x0012
#define CT_CAN_MODULE 0x0013

#define CT_J1939_MANAGER 0x0018
#define CT_J1939_ECU 0x0019

#define CT_PROFIBUS_MASTER 0x0020
#define CT_PROFIBUS_SLAVE 0x0021
#define CT_PROFIBUS_DEVICE 0x0022
#define CT_PROFIBUS_MOD_MASTER 0x0023
#define CT_PROFIBUS_MOD_SLAVE 0x0024

#define CT_DEVICENET_CANBUS 0x002F
#define CT_DEVICENET_MASTER 0x0030
#define CT_DEVICENET_SLAVE 0x0031
#define CT_DEVICENET_DEVICE 0x0032

#define CT_ETHERCAT_MASTER 0x0040
#define CT_ETHERCAT_SLAVE 0x0041
#define CT_ETHERCAT_DEVICE 0x0042
#define CT_ETHERCAT_MODULE_PARENT_CONNECTOR 0x0043
#define CT_ETHERCAT_KBUS_MODULE 0x0044

#define CT_SERCOSIII_MASTER 0x0046
#define CT_SERCOSIII_SLAVE 0x0047
#define CT_SERCOSIII_MODULE 0x0048
#define CT_SERCOSIII_SAFETY_MODULE 0x0049
#define CT_SERCOSIII_SLAVE_CONNECTOR_TO_MODULE 0x004A

#define CT_PROFINET_IO_MASTER 0x0050
#define CT_PROFINET_IO_SLAVE 0x0051
#define CT_PROFINET_IO_MODULE 0x0052
#define CT_PROFINET_IO_DEVICE 0x0053
#define CT_PROFINET_IO_SUBMODULE 0x0054

#define CT_MODBUS_TCP_MASTER 0x0058
#define CT_MODBUS_TCP_SLAVE 0x0059
#define CT_MODBUS_TCP_SLAVE_DEVICE 0x0073

#define CT_MODBUS_SERIAL_MASTER 0x005A
#define CT_MODBUS_SERIAL_SLAVE_TO_MASTER 0x005B
#define CT_MODBUS_SERIAL_PORT 0x005C
#define CT_MODBUS_SERIAL_MASTER_TO_PORT 0x005D

#define CT_ETHERNET_IP_SCANNER 0x0064
#define CT_ETHERNET_IP_REMOTE_ADAPTER 0x0065

DWORD

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 90 of 90
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Element IEC Data type

#define CT_ETHERNET_IP_MODULE 0x0066
#define CT_ETHERNET_IP_LOCAL_ADAPTER 0x0078

#define CT_ETHERNET_ADAPTER 0x006E

#define CT_ASI_MASTER 0x0082
#define CT_ASI_SLAVE 0x0083

#define CT_SOFTIO_MASTER 0x0094
#define CT_SOFTIO_SLAVE 0x0095

#define CT_GENERIC_LOGICAL_DEVICE 0x0096
#define CT_GENERATED_LOGICAL_DEVICE 0x0097
#define CT_LOGICAL_GVL_DEVICE 0x0098

#define CT_IOLINK_MASTER 0x00A0
#define CT_IOLINK_DEVICE_V101 0x00A2
#define CT_IOLINK_DEVICE_V11 0x00A3
#define CT_IOLINK_STANDARD_INOUT 0x00B0

#define CT_SIL2_UNSAFE_BRIDGE_MASTER 0x00C0
#define CT_SIL2_UNSAFE_BRIDGE_SLAVE 0x00C1

#define CT_PCI_MASTER 0x0100
#define CT_PCI_SLAVE 0x0101

#define CT_IEC61850_SERVER 0x0200
#define CT_IEC61850_SERVER_PARENT 0x0201
#define CT_IEC61850_CONTROL_BLOCKS 0x0202 /*..0x021F */
#define CT_IEC61850_LOGICAL_DEVICE 0x0230 /*..0x023F */
#define CT_IEC61850_LOGICAL_NODE 0x0240 /*..0x024F */
#define CT_IEC61850_DATA_SETS_NODE 0x0250
#define CT_IEC61850_REPORT_CONTROL_BLOCKS_NODE 0x0260
#define CT_IEC61850_LOG_CONTROL_BLOCKS_NODE 0x270
#define CT_IEC61850_GOOSE_CONTROL_BLOCKS_NODE 0x280
#define CT_IEC61850_SAMPLED_VALUE_CONTROL_NODE 0x290

#define CT_SAFETYSP_IO_MASTER 0x301
#define CT_SAFETYSP_IP_SLAVE 0x302

#define CT_SOFTMOTION_ALLGEMEIN 0x400
#define CT_SOFTMOTION_POSCONTROL 0x401
#define CT_SoftMotion_CAN 0x402
#define CT_SOFTMOTION_ETHERCAT 0x403
#define CT_SOFTMOTION_SERCOSIII 0x404
#define CT_SOFTMOTION_FREE_ENCODER 0x480
#define CT_SOFTMOTION_FIX_ENCODER 0x481
#define CT_SOFTMOTION_ENCODER_CAN 0x482
#define CT_SOFTMOTION_ENCODER_ETHERCAT 0x483
#define CT_SOFTMOTION_LOGICAL_AXIS 0x4e0
#define CT_SOFTMOTION_DRIVEPOOL 0x4ff

#define CT_SOFTVISION_CAMERA_DEVICE 0x800

#define CT_USB_GAME_CONTROLLER 0x900

#define CT_FDT_Communication_DTM 0xFD7
#define CT_FDT_Gateway_DTM 0xFD8

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 91 of 91
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Element IEC Data type

#define CT_FDT_Device_DTM 0xFD9

#define CT_OEM_START 0x8000
#define CT_OEM_END 0x8FFF

Diagnostic Flags:
#define CF_ENABLE 0x0001
#define CF_DRIVER_AVAILABLE 0x0010
#define CF_CONNECTOR_FOUND 0x0020
#define CF_CONNECTOR_CONFIGURED 0x0040
#define CF_CONNECTOR_ACTIVE 0x0080
#define CF_CONNECTOR_BUS_ERROR 0x0100
#define CF_CONNECTOR_ERROR 0x0200
#define CF_CONNECTOR_DIAGNOSTIC_AVAILABLE 0x0400
#define CF_CONNECTOR_PASSIVE 0x0800

DWORD

I/O-Driver handle, that operates this connector DWORD

Number of parameters DWORD

Pointer to the parameter list DWORD

Pointer to the father node DWORD

The complete I/O-configuration is generated as a list of connectors. For the example shown in the
figure above an I/O-configuration as follows will be generated.

Nr Connector Father

0 Target (PLC) --

1 PCI Master 0

2 PCI Slave 1

3 Profibus Master 2

4 Profibus Slave 3

5 Modulbus Master 4

6 Modulbus Slave, Input 5

7 Modulbus Slave, Output 5

This structure will be downloaded exactly in such a list of connectors to the runtime system. This list
then can be examined by an I/O-driver.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 92 of 92
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

6.3.2 Parameters
The whole configuration of a device is based on parameter lists. Parameter lists correspond to object
dictionaries as used in various field buses. Parameters are identified via a 32-bit number, the
parameter Id. The structure and the meaning of a parameter with a certain Id are described separately
for each device type in the form of a profile (profiles exist for Profibus masters and Profibus slaves, for
example).

Process data (I/O channels) are also defined as parameters. They are identified separately as input or
output. These parameters can be displayed in the process map and updated based on the bus cycle,
even if the mapped variable is not used directly in any task (attribute “alwaysmapping” in the device
description of the parameter).

A device can have any number of connections, so that it can be operated in a Profibus or a CANopen
network, for example. In each case the same device is parameterized, although the configuration will
differ significantly (in one case via the CANopen object dictionary; in the other as Profibus slave
parameter). Each connector has its own parameter list for parameterizing the device from the
perspective of this connector, i.e. as CANopen device or as Profibus slave. In this way several similar
master connections that are used simultaneously (e.g. 2 Profibus strands) can be configured
separately (different baud rate etc.). These parameter lists are usually not required on the device (e.g.
the field bus slave), which usually has no CODESYS access. Instead they are stored in a CODESYS-
configurable device (host), where an I/O driver converts the parameter lists to the fieldbus-specific
format and then configures the device via the fieldbus. Parameter lists in connectors are therefore
referred to as host parameter set 3

In contrast, a CODESYS-configurable device can define a device parameter set

, because they are loaded to the responsible host.
4

In many cases host parameter sets have to be “handed” upwards through several devices to ensure
they end up at the right parent. For child connectors the parameter set is always transferred to the
parent by default. Ambiguity can arise with parent connectors, where the parameter set may be
required on the device itself (for CODESYS-configurable devices) or may have to be handed upwards
via a child connector. In order to ensure that CODESYS finds the right path, parent connectors specify
via which child connector the parameter set should be transported, or whether it should be displayed
directly in the device ( host path). For identification purposes all connectors therefore have a unique
(within the device) Id > 0.

. This parameter list
is directly transferred to the device and is independent of the connectors used.

The following example illustrates this. It shows a configuration with a PC-based Soft PLC, with a
Profibus card connected to the PCI bus, to which a bus coupler with several modules is connected.

Figure 8: Parameter set in a typical Profibus configuration

3 engl. Hostparameterset
4 engl. Deviceparameterset

PC with Soft PLC

DP expansion card DPS_1 (device
parameter set)

HPS_1 (host parameter

set) Configures PCI parent
(empty)

PCI

PCI

HPS_2 Configures PCI
child (empty)

 HPS_3 Configures DP
master (baud rate, ...)

DP

 DP

DP Bus Coupler

Internal

HPS_4 Configures DP
slave (NodeId, watchdog,

...)

1 byte Digital In

HPS_5
(empty)

 HPS_6 Configures DP
module (available

channels)

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 93 of 93
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

When the configuration is loaded to the Soft PLC it receives its own device parameter set (DPS_1) and
then all host parameter sets for connectors that have a host path to this device (i.e. all host parameter
sets shown in the diagram): HPS_1 as parent of HPS_2, below HPS_3, ... down to HPS_6. If an
“intelligent” device below the PLC had its own device parameter set defined (e.g. the Bus Coupler), it
would not appear on the PLC. It would only be used if the Bus Coupler was CODESYS-configurable
and therefore had its own (bus-independent) configuration.

A parameter is described in the following structure:

Element IEC Datatype

Parameter ID DWORD

Value or pointer to value DWORD

Datatype (Enum) WORD

Length in Bits WORD

Flags:

#define PVF_FUNCTION 0x0001

#define PVF_POINTER 0x0002

#define PVF_VALUE 0x0004

#define PVF_READ 0x0010

#define PVF_WRITE 0x0020

DWORD

Driver specific DWORD

Master specific slave parameters:

A fieldbus master can define parameters that should be created within its slaves additionally to the
default parameters. For this purpose the attribute "createInChildConnector" is to be added to the
respective parameter definition in the device description of the master. The parameter then will be
created also in every child device. Example:

<Parameter ParameterId="12345678" type="std:BOOL">
- <!--
16#30010000 // ETC_MASTER_USELRW
 -->

 <Attributes offlineaccess="readwrite" download="true" functional="false"
createInChildConnector="true" />

 <Default>true</Default>
 <Name name="local:NONE">testparameter</Name>
 <Description name="local:NONE">">Testparameter for child</Description>

 </Parameter>

See also chap. 6.4.4.6 for device description entries concerning parameters.

6.3.3 I/O mapping
As described in the chapter before, input and output channels are described in form of parameters.
Where an input value must be copied from the physical device into the application and where to copy
an output value from the application to the device, is called the I/O-Mapping. The I/O-Mapping can be
specified in CODESYS by writing IEC variables to each configured input and output channel. Here a
new variable can be generated or an existing variable can be mapped to the corresponding channel.

Note: Strings cannot be mapped on channels!

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 94 of 94
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Each mapping entry is stored in the following structure:

Element IEC Datatype

Pointer to Parameter Description POINTER

Pointer to IEC-address POINTER

Parameter Bit-Offset WORD

IEC Bit-Offset WORD

Size in Bits WORD

BaseTypeInformation WORD

Driver specific DWORD

This mapping information is downloaded to the runtime system with the I/O-configuration (connector
list and parameter list). The mapping list is used to copy the channel values at every IEC task cycle
from the devices into the IEC application (inputs) and from the IEC application to the devices (outputs)
via the I/O-drivers.

The basetype information parameter contains information, which is needed to perform a correct
swapping action. This must be done by the driver, because the runtime system does not know the byte
order of the fieldbus. The io driver knows the byte order of the fieldbus and the byte order of the target
system.

In the lower byte the type class is set. The type classes are defined in the IBase library. With the base
class information you can calculate the swapping size e.g. WORD base class has got the swapping
size 2. This is information is important, because the parameter size in bits can be different to the
swapping size e.g. in array or structs, the sizes are different.

 In the high byte only two bits are used:

Bit 0x0100 : The swapping information in the parameter is valid. If this bit is set to 0, the
BaseTypeInformation is not set.

Bit 0x8000: Swapping is enabled or disabled. If this bit is set to 0. The BaseTypeInformation is valid,
but the parameter shouldn’t be swapped at all. If it is set to 1, the parameter must be swapped.

6.4 Device Description Files
Devices are described in XML files with extension .devdesc.xml. They must follow the
DeviceDescription-1.0.xsd scheme (see devicedescription_xsd.pdf). A description file may
describe a generally available device and any number of modules that are only available in the context
of this device.

Like all valid XML documents the description file contains a root node, in this case
“DeviceDescription”, which has no further attribute. Below this node there may be the following
general sections:
<DeviceDescription>

<Types></Types>
<Strings></Strings>
<Files></Files>
<Device>

<DeviceIdentification></DeviceIdentification>
<DeviceInfo></DeviceInfo>
<DriverInfo></DriverInfo>
<Connector></Connector>
<Functional></Functional>
<ExtendedSettings><\ExtendedSettings>

</Device>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 95 of 95
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

<Modules>
<Module>

<DeviceInfo></DeviceInfo>
<Connector></Connector>

</Module>
</Modules>

</DeviceDescription>

Additionally there might be subsections for defining the device resp. host parameters
(<deviceparameterset>, <hostparameterset>), for the library (<requiredlib>) handling, for the child
objects handling (<functional>), and for “Extended Settings” like the target settings.

Note: For complete documentation on the particular device description elements see the xsd schema provided by
devicedescription_xsd.pdf.

6.4.1 Defining types
The Types section contains type definitions for bitfields, ranges, arrays resp. simple structures:

6.4.1.1 Bitfields
Example:
<Types namespace="localTypes">

<BitfieldType basetype="std:BYTE" name="TBitFieldByte">
<Component identifier="Bit0" type="std:BOOL">

<Default>FALSE</Default>
<VisibleName name="local:Bit0">Bit0</VisibleName>

</Component>
<Component identifier="Bit1" type="std:BOOL">

<Default>FALSE</Default>
<VisibleName name="local:Bit1">Bit1</VisibleName>

</Component>
</BitfieldType>

</Types>
This example defines two bits. The base type is byte. The I/O mapping tab in CODESYS will show two
bit addresses and 1 byte address.

 <Parameter ParameterId="33554433" type="localTypes:TBitFieldByte">

<Attributes channel="input" download="true" offlineaccess="readwrite" />

<Default />

<Name name="local:Input1_1">Digital Input</Name>

</Parameter>

For defined parameters the type must be the namespace of the type section and name of the specified
defined type.

6.4.1.2 Range types
The range type defines a subrange of a given base type. For example UDINT has a normal range from
0 to 4294967296. With the range type the maximum values are limited.

Example:

<RangeType basetype="std:UDINT" name="TRange">
 <Min>16#0</Min>
 <Max>16#1FFFFFFF</Max>
 <Default>0</Default>
</RangeType>

6.4.1.3 Array types
Parameters can also be defined as arrays with “std:ARRAY[0..10] OF DWORD”. In the I/O
configuration tab of the programming system however only one line will be available and for this reason
only one variable could be mapped to the complete array. So it is a better solution to define the special
array type. Up to three dimensions are possible and in the mapping tab for each element a separate
line will be shown.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 96 of 96
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Example:

<ArrayType name="TestArray" basetype="std:DWORD">
 <FirstDimension>
 <LowerBorder>0</LowerBorder>
 <UpperBorder>10</UpperBorder>
 </FirstDimension>
</ArrayType>
<Parameter ParameterId="30" type="localTypes:TestArray">
 <Attributes offlineaccess="readwrite" download="true" />
 <Default>12</Default>
 <Default>23</Default>
 <Default>34</Default>
 <Default>35</Default>
 <Name name="local:NONE">Array</Name>
</Parameter>

A new parameter with the defined array type is created and also default values are set to the first four
elements.

6.4.1.4 Simple structures
The structure type could define structures like in IEC:

Example:

TYPE TFMMU:

STRUCT

GlobStartAdr:DWORD;

Length:UINT;

END_STRUCT

END_TYPE

<StructType name="TFMMU">
 <Component identifier="globstartadr" type="std:DWORD">
 <Default>8000</Default>
 <VisibleName name="local:globstartadr">Global Start Address</VisibleName>
 </Component>
 <Component identifier="length" type="std:uint">
 <Default>1</Default>
 <VisibleName name="local:length">Length</VisibleName>
 </Component>
</StructType>
<Parameter ParameterId="32" type="localTypes:TFMMU">
 <Attributes offlineaccess="readwrite" download="true" />
 <Name name="local:NONE">Structure</Name>
</Parameter>

With this example a parameter with a structure is added. In the generic device configuration view all
sub elements will be shown in separate lines.

6.4.2 Defining strings for localization
In order to provide device specific strings in multiple languages, e.g. names and descriptions of
parameters, the respective language entries can be added to the device description file:

Example:

<ParameterSection>
 <Name name="local:GeneralParameters">General Parameters</Name>
 <Parameter ParameterId="65792" type="std:BOOL">
 <Attributes download="true" offlineaccess="read" />
 <Default>FALSE</Default>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 97 of 97
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <Name name="local:SlaveOptional">Slave optional</Name>
 <Description name="local:SlaveOptional">Slave optional</Description>
 </Parameter>
</ParameterSection>
<Strings namespace="local">
 <Language lang="en">
 <String identifier="SlaveOptional">Slave optional (en)</String>
 </Language>
 <Language lang="de">
 <String identifier="SlaveOptional">Slave optional (de)</String>
 </Language>
</Strings>

In this example a parameter section “General Parameters” is created and one configuration parameter
is added. The name attribute for the section name, parameter name and description is linking to a
string table for localization. Two languages are added in preparation for getting translated. The name
attribute "local:SlaveOptional” is composed of the namespace “local” and the string identifier
“SlaveOptional”. So only the value for the string element has to be translated. The value of Name or
Description will be the default string if the currently selected language in CODESYS is not found in the
string table.

6.4.3 Defining files and adding icons and images
Like strings also files can be localized. This is done in a special "files" section.

Example:

<Files namespace="local">
 <Language lang="en">
 <File fileref="local" identifier="PCIcard">
 <LocalFile>PCIcard.ico</LocalFile>
 </File>
 </Language>
</Files>

The file will be used as an icon in the device tree. This is defined in the DeviceInfo element.

Example:

<DeviceInfo>
 <Name name="local:TypeName">SercosIII Master</Name>
 <Description name="local:typedescription">Sercos III Master</Description>
 <Vendor name="localStrings:_3S">3S - Smart Software Solutions GmbH</Vendor>
 <OrderNumber>1</OrderNumber>
 <Icon name="local:PCIcard">PCIcard.ico</Icon>
</DeviceInfo>

With the "Icon" element the icon file is linked to the device. The value PCIcard.ico is the default value
for the case that the language cannot be found. The "name" attribute is a combination of the
namespace and identifier of the file section.

6.4.4 Defining the device itself (identification, connectors, driver, parameters)
The following chapters describe sub-sections of section <Device> within the device description file:

• Device, general settings (6.4.4.1)

• DeviceIdentification (6.4.4.2)

• DeviceInfo (6.4.4.3)

• Driverinfo (including libraries and function block handling, 6.4.4.4)

• Connector (6.4.4.5)

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 98 of 98
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• Functional (for child objects, 6.4.4.7)

• ParameterSection, HostParameterSet, DeviceParameterSet, Parameter (6.4.4.6)

• Compatible Versions (6.4.4.8)

6.4.4.1 Device
Attributes for general settings for the device might be assigned to the <Device> tag.

Example:

<Device showParamsInDevDescOrder="true">

XML-Tag Description

showParamsInDevDescOrder Boolean; If TRUE, the generic device configuration view
and I/O mapping view will show the parameters in the
same order as they are listed in the device description. If
FALSE (default) the parameters are listed according to
their IDs.

6.4.4.2 Device identification
This section below a <device> specifies the device identification. The identification is checked for
consistency when a connection with a runtime system is established. For this reason these entries
must match the corresponding values in the runtime system.

Example:

<DeviceIdentification>
 <Type>4096</Type>
 <Id>0000 0001</Id>
 <Version>3.0.2.0</Version>
</DeviceIdentification>

Type Device type:

0000 (0x0000) special type: empty slot

4096 (0x1000) programmable devices

4097 (0x1001) 3S special devices (OfflineVisuClient or similar)

4098 (0x1002) safety controllers

4099 (0x1003) drives

5000 (0x1004) parameterizable devices

 ID number:

High word: VendorId (allocated to OEMs by 3S).

 3S = 0x0000

Low word: OEM-based controller Id (may be a consecutive number)

Version Version of the controller or the target description. The version is verified as
follows when a connection with the controller is established.

Version: 4.3.2.1

Main version: 4

Subversion: 3

Service pack version: 2

Patch version: 1

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 99 of 99
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

a) Different main versions of the device description and the runtime system
 are generally not compatible and cannot be used together

b) While different subversion are compatible in principle, a warning is issued
 because changes in the runtime system may lead to semantic changes or
 changes in behaviour

c) Different service pack numbers are compatible, since only new interfaces
 were added, for example. Any changes in existing interfaces would lead to
 incompatibility!

d) Different patch numbers are compatible, since only changes in the target
 description were made, without affecting the controller

This numbering scheme must be taken into account for all future changes in
the target description or the runtime system.

In the runtime system the DeviceIdentification values are set in the SysTarget component. This
component offers interfaces for accessing the DeviceIdentifications.

Alternatively, the values may be defined in the general header file of runtime system
sysdefines.h. In this case the associated values are automatically set during compilation of the
SysTarget component. This has the advantage that the target component only has to be
parameterized, not replaced.

The defines for the file sysdefines.h are listed below:

#define SYSTARGET_DEVICE_TYPE SYSTARGET_TYPE_PROGRAMMABLE

#define SYSTARGET_VENDOR_ID 0x0000
#define SYSTARGET_DEVICE_ID 0x0001

#define SYSTARGET_DEVICE_VERSION 0x03000301

6.4.4.3 Device info
In this section, below a <device>, some general information and descriptions of the device can be
specified.

Example:
<DeviceInfo>
<Name name="local:typename">CODESYS Control for Win32</Name>
 <Description name="local:typedescription">A CODESYS V3 Soft PLC for
Win32</Description>
 <Vendor name="local:3S">3S - Smart Software Solutions GmbH</Vendor>
 <OrderNumber>xxx</OrderNumber>
</DeviceInfo>

XML-Tag Description

Name Name of the device that appears in the Properties dialogue for the device
in the CODESYS

Description Description of the device; this is also displayed in the Properties dialogue

Vendor Manufacturer name

OrderNumber Product number under which the device can be ordered from the
manufacturer

Note: For complete documentation on the particular device description elements see the xsd schema provided by
devicedescription_xsd.pdf.

These values are only used for display in the device tree.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 100 of 100
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

During online scanning of devices the device name and the manufacturer’s name are displayed. The
values are read online from the run-time system, rather than being taken from the device description.
In the runtime system the values can be set through the following defines in the file sysdefines.h:

#define SYSTARGET_DEVICE_NAME "CODESYS Control for Win32"

#define SYSTARGET_VENDOR_NAME "3S - Smart Software Solutions GmbH"

6.4.4.4 Driver info
A device is typically operated by a driver. In this section, below a <device>, some general information
for the driver can be specified.

Example:

<DriverInfo needsBusCycle="false" UpdateIosInStop="true"
 StopResetBehaviour="SetToDefault">
 <RequiredLib libname="IoStandard" vendor="System" version="3.1.2.0"
 identifier="iostandardlib" />
</DriverInfo>

XML-Tag Description

needsBusCycle Specifies, if the device needs a separate bus cycle. If this attribute is
TRUE, the corresponding IO-driver get a cyclic call to is
IoDrvStartBusCycle() interface method. The context of this call can be
specified by the user (see chapter 7.2.2).

UpdateIosInStop If TRUE, the option “Update IO while in stop” in dialog “PLC settings”
of the device editor will be activated.

StopResetBehaviour Defines the default selection for option “Update IO while in stop” in
dialog “PLC settings” of the device editor.

RequiredLib Defines a library that is added when a device is added in the project.

The IO standard is required by the IO configuration and must be
compatible with the controller implementation.

An IoStandard.library for the device must therefore be specified here

Instead of a fix library name a library placeholder (attribute
“placeholderlib”) can be specified here. This will effect that, when the
device is included to the project, each the currently available
corresponding customer-specific library will be included.

defaultBusCycleTask Defines the default bus cycle task; example:
defaultBusCycleTask=”MainTask”

Note: This setting overwrites a possibly available “useSlowestTask” resp.
the basic default setting (=task with the shortest cycle time will be
used as bus cycle task).

useSlowestTask If TRUE, the task with the longest cycle time will be used as bus cycle
task. Otherwise the task with the shortest cycle time or – if defined –
the “defaultBusCycleTask” (see above) will be used.

RequiredCyclicTask

taskpou

Specifies a cyclic task which shall automatically be added to the Task
Configuration, when the device is inserted in the device tree. The task
is defined by the attributes “taskname” and “priority”, see example
below.

Setting “taskpou” allows to specify a POU, which should be added to
the configuration of the above defined task. Regard that this only
means, that the POU name will be entered in the task configuration,
not however that the POU itself will be created in the project !

Example:

<RequiredCyclicTask taskname="Ethercat" priority="2" cycletime="t#6ms">
 <taskpou>Test_Pou1</taskpou>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 101 of 101
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML-Tag Description
 <taskpou>Test_Pou2</taskpou>
</RequiredCyclicTask>

RequiredExternalEventTask

taskpou

Corresponds to the above described “RequiredCyclicTask” setting; for
automatically adding an external event task to the task configuration
when inserting the device

Example:

<RequiredExternalEventTask taskname="EthercatEvent" priority="2">
 <taskpou>Test_Pou3</taskpou>
 <taskpou>Test_Pou4</taskpou>
</RequiredExternalEventTask>

Note: For complete documentation on the particular device description elements see the xsd schema provided by
devicedescription_xsd.pdf.

Note: If libraries, having the same library name and vendor name, are requested by a father object as well as by a child
object (a child object is an object indented below the father object in the device tree), only that library version will be
included which is requested by the father object.

6.4.4.4.1 Adding libraries and function blocks
Example:

<DriverInfo needsBusCycle="false">
 <RequiredLib identifier="IoDrvSercos3" libname="IoDrvSercos3"
placeholderlib="IoDrvSercos3" vendor="3S - Smart Software Solutions GmbH"
version="3.1.2.0">
 <FBInstance basename="$(DeviceName)" fbname="Sercos3Slave">
 <Initialize methodName="Initialize" />
 </FBInstance>
 </RequiredLib>
</DriverInfo>

With the DriverInfo and RequiredLib elements it is possible to get libraries added to the project
automatically as soon as the user adds a specific device in the configuration tree. The library is
selected by libname, vendor and version and must match with the information from the library file.

The identifier element selects the namespace as it is shown in the library manager of the project.

With the element placeholderlib an unique name is defined. The placeholder itself is defined in the
device description of the PLC in the target settings section and it will override the libname, vendor and
version attribute. Optionally an attribute “loadAsSystemLibrary=true|false” can be added: If it is “false”,
the library will be inserted as a “normal” library (black writing). If it is “true” (default) or missing, the
library will be inserted as a “system library” (grey writing).
With this placeholder mechanism it is possible to select a specific library version by only changing the
PLC device description. All other description files (master, slaves) do not need to be changed.

The FBInstance entry effects that automatically a function block will be created for each device. The
basename $(DeviceName) will be replaced by the actual device name in the device tree. Also
combinations like $(DeviceName)_abc are possible. It the device is renamed in the device tree for
example to "Drive1" then the function block will be named Drive1_abc.

With "Initialize" a special method could be declared, which will be called automatically when
downloading the project.

The declaration for the Initialize method must be exactly as follows:

METHOD Initialize : UDINT

VAR_INPUT

wModuleType : UINT;

dwInstance : UDINT;

pConnector : POINTER TO IoConfigConnector;

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 102 of 102
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

END_VAR

For complete documentation see the information given by the xsd schema.

6.4.4.5 Defining connectors
In this section, below a <device>, a connector for the device can be specified. See chap. 6.3.1 for
general information on connectors.

See in the following a description on the following cases:

• Slave with 1 connector

• Master with 2 connectors

• Multiple parent connectors

6.4.4.5.1 Slave with 1 connector
Slaves with no module typically have only one connector. In the device description there is only one
connector with role “child”.

Example (EtherCAT):

<Connector connectorId="1" explicit="false" hostpath="-1" interface="Common.Ethercat"
moduleType="65" role="child">
 InterfaceName name="local:EtherCAT">EtherCAT</InterfaceName>
 Slot allowEmpty="false" count="1" />
</Connector>

For such devices the connector is a slot with allowEmpty false and a count of 1.

The connectorId is 1 as it has only one connector. The hostpath for a child is not important but is
included for completeness. The moduleType 65 defines a EtherCAT slave. All numbers below 32768
are maintained by 3S-Smart Software Solutions GmbH. The interface “Common.Ethercat” must match
with the parent connector of the master. The part "Common" is used by 3S-Smart Software Solutions
GmbH. Customers use their own unique identification here.

6.4.4.5.2 Master with 2 connectors
A master device description typically has 2 connectors. One of them is a child connector for the PLC
and the other is designated for the slave devices.

Example (EtherCAT master):

<Connector connectorId="1" explicit="false" hostpath="-1" interface="Common.PCI"
moduleType="257" role="child">
 <InterfaceName name="local:PCI_Interface">PCI-Bus</InterfaceName>
 <Slot allowEmpty="false" count="1" />
</Connector>
<Connector connectorId="2" explicit="false" hostpath="1" interface="Common.Ethercat"
moduleType="64" role="parent">
 <InterfaceName name="local:EtherCAT_Interface">EtherCAT</InterfaceName>
 <Var max="125"/>
</Connector>

Here the child connector with connectorId 1 is for slaves. It has a slot type with count 1 and allowEmpty
set to false.

The second connector is a parent connector with connectorId 2 as it is the second one. Hostpath is 1
because the connectorId of the child connector is 1. This controls the link between parent and child
connectors.

The Var type allows 125 devices to be added to the master.

6.4.4.5.3 Multiple parent connectors
Example (Sercos 3 slave with modules):

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 103 of 103
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

First there is a connector to the master:

<Connector connectorId="0" explicit="false" hostpath="-1"
interface="Common.SercosIIIMaster" moduleType="71" role="child">
 InterfaceName name="local:SERCOSIII">SERCOS III</InterfaceName>
 Slot allowEmpty="false" count="1" />
</Connector>

A fixed module, defined in the same device description, will automatically be inserted below the slave
when the slave gets added to the configuration:

<Connector connectorId="1" explicit="false" hostpath="0"
interface="Common.SercosIIISlave" moduleType="74" role="parent">
 <InterfaceName name="local:SercosIIIModule_23003886">SERCOS III
Module</InterfaceName>
 <Fixed>
 <Module>
 <LocalModuleId>23003886</LocalModuleId>
 </Module>
 </Fixed>
</Connector>

A second parent connector is used for the modules:

<Connector connectorId="2" explicit="false" hostpath="0"
interface="Common.SercosIIISlave" moduleType="74" role="parent">
 <InterfaceName name="local:SercosIIIModule">SERCOS III Module</InterfaceName>
 <Var max="255" />
</Connector>

The connectorId for the child is 0 and therefore the hostpath for both parent connectors also is 0.

XML Tag Description

moduleType Connector type

interface Interface type; defines under which interface type this device can
be added (role=“child”) or which interface can logically be added
(role=“child”)

role Specifies the purpose of the interface type

explicit Specifies, whether the connector should appear as a separate
object in the device tree (i.e. the connector is visible to the user as
an object).

alwaysmapping If this attribute is set to "true", all in- and output variables will be
updated automatically in each task cycle regardless if they are
used or not.

hideInStatusPage If set to true (default false and optional) then no status information
will be shown for this connector in the device editor.

updateAllowed If FALSE, the device cannot be updated in the projects device tree
(only to be used for child connectors!).

Note: For complete documentation on the particular device description elements see the xsd schema
provided by devicedescription_xsd.pdf.

6.4.4.6 Defining parameters and parameter sections
See chap. 6.3.2 for general information on parameters in the device description.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 104 of 104
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Parameters and parameter sections can be defined inside a parameter set.

Parameter lists in connectors (see chap. 6.4.4.5) are referred to as HostParameterSet, because they
are loaded to the responsible host. See below for an example. In contrast a CODESYS-configurable
PLC device with local I/Os (see chap. 6.4.4) can define a DeviceParameterSet (to be defined within
the <device> section). This parameter list is directly transferred to the device and is independent of the
connectors used. However, in case of devices with connectors like master or slaves the
DeviceParameterSet will be ignored by CODESYS.

Parameter sections just serve for grouping parameters for organizational purposes.

Example of a parameter section:

<ParameterSection>
 <Name name="local:GeneralParameters">General Parameters</Name>
 <Parameter ParameterId="65792" type="std:BOOL">
 <Attributes download="true" offlineaccess="read" />
 <Default>FALSE</Default>
 <Name name="local:SlaveOptional">Slave optional</Name>
 <Description name="local:SlaveOptional">Slave optional</Description>
 </Parameter>
</ParameterSection>

In this example a parameter section “General Parameters” is created and one configuration
parameter is added. The name attribute for the section name, parameter name and description is
linking to a string table for localization (see also chap. 6.4.2). The value of Name or Description will
be the default string if the currently selected language in CODESYS is not found in the string table.

The parameter id is a unique number within the device description and is depending on the module
type of the connector (values <32768 are maintained by 3S).

In order to get parameters accessible by the "intellisense" function in the programming system, and
by its full namespace, as from compiler version >= 3.5.1.0 the attribute "functional" can be used in
the parameter description. It effects that the CODESYS compiler instead of a parameter description at
every read access will create some external function calls supported by a runtime system interface.
Regard that this functionality is only possible for simple datatypes. Structures and Arrays are not
supported. External functions will be created by the compiler, which are supported by an interface in
the runtime system.

Example:

<Parameter ParameterId="1234" type="std:REAL">
 <Attributes channel="none" download="false" functional="true"
offlineaccess="readwrite" onlineaccess="readwrite" />
 <Default>111</Default>
 <Name name="local:Id1234">Velocity</Name>
 <Description name="local:Id1234.Desc">Test parameter</Description>
</Parameter>

The parameter can be accessed now by its namespace, e.g. if this parameter is a member of the
device "Drive":
 Drive.Velocity := 1.23;

Only simple datatypes are possible (BOOL, BYTE, WORD, DWORD, SINT, INT, DINT, LWORD, LINT, REAL,
LREAL). ENUMs are possible because they are handled as INT.
Structures and arrays are not supported.

The compiler generates instead of a parameter description at every read access the following external function
call:
Only for BOOL types
RTS_IEC_BOOL ParamGetBit(RTS_IEC_DWORD dwParameterId, DWORD dwBitNr);

For all other simple datatypes. XXX is the IEC datatype like WORD
RTS_IEC_XXX ParamGetXXX(RTS_IEC_DWORD dwParameterId);

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 105 of 105
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

The ID of the parameter will be transmitted in dwParameterId.

For every write access on a parameter one of the following external functions is called:
Only for BOOL types
VOID ParamSetBit(RTS_IEC_DWORD dwParameterId, DWORD dwBitNr, BOOL bValue);

For all other simple datatypes separated for 4 and 8 Byte values
VOID ParamSet4Byte(RTS_IEC_DWORD dwParameterId, DWORD dwValue);
VOID ParamSet8Byte(RTS_IEC_DWORD dwParameterId, LWORD lwValue);

With version 3.5 SP3 it is also possible to use the enumerations as the enum value instead of the integer
value.
Also structured parameters are possible when using parameter sections.
Example if parameter is stored in a section:

<ParameterSection>
 <Name name="local:SectionName">Section</Name>
 <ParameterSection>
 <Name name="local:SubSectionName">SubSection</Name>
 </ParameterSection>
</ParameterSection>

Then the access will be Drive.Section.SubSection.Velocity := 1.23;

Example for a host parameter set (sub-section below <connector>):

<HostParameterSet>
 <Parameter ParameterId="0" type="std:WORD">
 <Attributes channel="none" download="true" functional="false" offlineaccess="read"
onlineaccess="read" />
 <Default>0</Default>
 <Name name="local:Id0">NumberOfInputs</Name>
 <Description name="local:Id0.Desc">Number of input channels</Description>
 </Parameter>
 …
 <Parameter ParameterId="458759" type="std:BOOL">
 <Attributes channel="none" download="false" functional="false" offlineaccess="read"
onlineaccess="none" />
 <Default>TRUE</Default>
 <Name name="local:Id458759">AutoClearSupported</Name>
 <Description name="local:Id458759.Desc">auto-clear supported by
master</Description>
 </Parameter>
 ….
</HostParameterSet>

XML Tag Description

ParameterId Identification number of the parameter; see 6.3.2

For defining the NetX configuration dialog in the device editor of
the programming system use IDs "1879048194" and
"1879048195" as shown in the example below.

AutoClearSupported If TRUE

Note: For complete documentation on the particular device description elements see the xsd schema provided by
devicedescription_xsd.pdf.

Special Parameter entries for NetX configuration dialog:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 106 of 106
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

The following entries below a <HostParameterSet> of a <Connector> enable the user to select the
NetX chip and the communication channel on this chip via the “NetX Configuration” dialog for a NetX
Master in the device editor of the programming system:

Example:

1. The following entry establishes a field named “Slot” in the configuration dialog and the selection list
next to it will offer the available slots, i.e. the available NetX cards as defined by an enumeration
“eSlot”:

<Parameter ParameterId="1879048194" type="local:eSlot">
 <Attributes channel="none" download="true" functional="false"
offlineaccess="readwrite" onlineaccess="read" />
 <Default>0</Default>
 <Name name="local:Id1879048194">Slot</Name>
 <Description name="local:1879048194.Desc">Slot of the NetX chip</Description>
</Parameter>

2. The following entry establishes a field named “NetX Com Channel” in the configuration dialog and
the selection list next to it will offer the available communication channels on the NetX card as defined
by an enumeration “NetXComChannel”:

<Parameter ParameterId="1879048195" type="local:NetXComChannel">
 <Attributes channel="none" download="true" functional="false"
offlineaccess="readwrite" onlineaccess="read" />
 <Default>0</Default>
 <Name name="local:Id1879048195">NetX Com Channel</Name>
 <Description name="local:1879048195.Desc">NetX Communcation channel</Description>
</Parameter>

Parameters in a Device Parameter Set for defining input and output channels:

A device parameter set (Note: only usable with a CODESYS-configurable PLC device with local I/Os !)
can contain fix settings for input and output channels:

Example:

<DeviceParameterSet fixedInputAddress="%IB10" fixedOutputAddress="%QB10">
 <Parameter ParameterId="1" type="std:BYTE">
 <Attributes channel="output" download="true" offlineaccess="readwrite"
noManualAddress="false"/>
 <Default>0</Default>
 <Name name="local:None">Output</Name>
 <Description name="local:None">Output</Description>
 </Parameter>
 <Parameter ParameterId="2" type="std:BYTE">
 <Attributes channel="input" download="true" offlineaccess="readwrite"
noManualAddress="true"/>
 <Default>0</Default>
 <Name name="local:None">Input</Name>
 <Description name="local:None">Input</Description>
 </Parameter>
</DeviceParameterSet>

XML-Tag Description

fixedInputAddress Start address of the first input channel

fixedOutputAddress Start address of the first output channel

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 107 of 107
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML-Tag Description

ParameterId Identification number of the parameter; see 6.3.2

type datatype of the parameter

Attribute
channel

Channel type of the parameter. Possible values are “output” and
“input”

Attribute
download

Set this (optional) attribute, if no i/o configuration should be
downloaded to the device (ie. The device does not support the
IoManager)

Attribute
offlineaccess

Boolean value. If set, secure online mode is by default activated for
the device. Secure online mode means that the user will have to
confirm most of the online commands before they become
effective.

Attribute
noManualAddress

If this attribute is set to TRUE, no manual change of the address of
the input or output channel is possible

6.4.4.7 Functional, defining child objects
In this section below a <device> any child objects of the device can be described. A child object is an
object indented below the father object in the device tree.

Example:

<Functional>
 <ChildObject>
 <ObjectGuid>8ceeba4e-ac7a-4fbd-9415-bfb2d98668ab</ObjectGuid>
 <ObjectName>Plc Logic</ObjectName>
 </ChildObject>
 <Attribute name="StdCommunicationLink">True</Attribute>
 <Attribute name="NoIoDownload">False</Attribute>
 <Attribute name="SecureOnlineMode">False</Attribute>
</Functional>

XML-Tag Description

ObjectGuid Typeguid of the factory, that is capable of creating the object.

ObjectName The name of the object as it should appear in the device tree.

Attribute
“StdCommunicationLink”

Boolean value. Must be set to true, if the device has a CODESYS
communication stack.

Attribute
“NoIoDownload”

Set this (optional) attribute, if no i/o configuration should be
downloaded to the device (ie. The device does not support the
IoManager)

Attribute
"SecureOnlineMode"

Boolean value. If set, secure online mode is by default activated for
the device. Secure online mode means that the user will have to
confirm most of the online commands before they become
effective.

Note: For complete documentation on the particular device description elements see the xsd schema provided by
devicedescription_xsd.pdf.

6.4.4.8 Compatible Versions
Here you can define, to which older versions the current device version is compatible. When the
CODESYS user opens a project using one of the here defined device versions, he will be prompted to
update to the new version.

Examples:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 108 of 108
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

<CompatibleVersions>
 <Version>3.4.2.0</Version>
</CompatibleVersions>
<CompatibleVersions>
 <Version>3.4.2.10</Version>
</CompatibleVersions>

or
<CompatibleVersions>
 <Version>3.4.*.*</Version>
</CompatibleVersions>

Wildcards can be used. Example: "3.4.*.*" means that the current version is compatible to all versions
of 3.4. When using a V3.3 device however in this case no update proposal will be made.

6.4.5 Target description
The term “target” always refers to the whole controller or PLC. The PLC node in the I/O-configuration is
defined by the target description, specifying all controller properties such as:

• which processor is used by the controller and therefore which code generator should be used
in CODESYS

• which compiler settings should be used for the CODESYS compiler

• what types and number of IEC tasks are possible on the controller

• limit and default values for memory areas of the IEC program (e.g. retain, code, data)

The target settings are also described in an XML file following the DeviceDescription-1.0.xsd
scheme, although there is a node <ExtendedSettings> that differs from this scheme since it only
applies to the target device descriptions.
These target settings also may define whether a setting is visible in the user interface of the
programming system and whether it is editable there (property “access”).
The individual sections of the <ExtendedSettings> node are described in the following chapters.

6.4.5.1 Target settings
This sub-section of <ExtendedSettings> describes the target settings of the <device>.

<ts:TargetSettings xmlns:ts="http://www.3s-software.com/schemas/TargetSettings-
0.1.xsd">
</ts:TargetSettings>

6.4.5.1.1 Runtime features
Sub-section “runtime_features” of <ts:TargetSettings…> describes specific properties of the runtime
system.

<ts:section name="runtime_features">
 <ts:setting name="cycle_control_in_iec" type="boolean" access="edit">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:section name="boot_project">
 <ts:setting name="boot_project_on_download_tag” type=”boolean”
access=”edit”>"<ts:value>1</ts:value>
 …
 </ts:section>
</ts:section>

XML Tag Description

ts:section “runtime_features” Specific properties of the runtime system

ts:setting
"cycle_control_in_iec"

1=Task FB is always called, irrespective of the
application status. The task FB uses this switch to
check the status of the task and no longer calls the

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 109 of 109
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description

(type=”boolean”) task POUs in stop state, for example

0=CmpApp in the runtime system must evaluate the
status of an application and call the task FB
accordingly

ts:setting
"cycle_control_version_2"

1= 1, __sys__rts__cycle__2() is called in the
runtime instead of __sys__rts__cycle(). The runtime
calls the taskcycle code independently of whether
the task is stopped or not and the generated code
controls which parts have to be executed (eg.
update I/O's but don't execute the Task POU's)
This increases performance, because no strings but
only a handle to the corresponding task is
transmitted to this function.

ts:setting
"dynamic_memory_supported"

(type=”boolean”)

1=The "Dynamic memory settings" tab in the
Application properties is available

0=The "Dynamic memory settings" tab is hidden

ts:setting
"support_user_check_functions“

(type=”boolean”)

1=The menu command for adding “POUs for
implicit checks” to an application is available in the
programming system

0=The user cannot add own check functions,
because these are provided by a hidden library

ts:setting
“optimized_online_change”

(type=”Boolean”)

1=online change (o.c.) with limited jitter by an
optimized o.c. procedure in the runtime system (as
from V3.4.3.0); o.c. code is divided to three POUs
containing the following:
- initialization code without any side effects on the
iec task (can be done in communication task)
- copy code for already initialized data (can be
repeated)
- online change code for the rest (must run without
interrupt)
Some examples for online change events, which will
now produce no jitter:
- change of an existing array size (even really big
ones)
- add new data of any size
- call new functions (a complete new call tree will
have no effect on the running iec-tasks)
Note however: If a function block interface is
changed, the jitter will depend on the initialization
code of this function block, and of its derived
function blocks.

0=online change with jitter as done up to V3.4.3.0;
this setting might be used, if jitter does not matter
and you prefer to use the established “old” online
change procedure, e.g. in order to avoid problems
due to required function block initializations

ts:section
”boot_project”

subsection of section “runtime_features” for boot
application settings; defines whether the
“Properties/Boot applications settings” for an
application object are available at all in the
programming system and which are the default
settings

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 110 of 110
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description

ts:setting
"boot_project_on_download_tag"

(type=”boolean”)

1=The “Boot application settings” are available in
the application properties dialog

0=The settings are switched off and not available in
the dialog

ts:setting
"support_boot_project_on_online_cha
nge"

(type=”boolean”)

0= setting “Implicit boot application on online
change” is switched off and not available in the
dialog

(1=available is default)

ts:setting
"boot_project_on_download_defau
lt"

(type=”boolean”)

1=setting “Implicit boot application on
download” is activated per default; i.e. at each
download automatically a boot application is
created on the target

0=setting is deactivated

ts:setting
"boot_project_on_online_change_def
ault"

(type=”boolean”)

1= setting “Implicit boot application on online
change” is activated per default; i.e. at each online
change automatically a boot application is created
on the target

0=setting is deactivated

ts:setting
"remind_boot_project_default"

(type=”boolean”)

1= setting “Remind boot application on project
close” is activated per default

0=setting is deactivated

The following settings (type=”boolean”) serve to control the visibility of commands of the
categories "OnlineCommands" and "Breakpoints". TRUE -> command is available

XML Tag Description

ts:setting
“only_explicit_features_supported”

This setting acts as an overall switch. If "TRUE",
only the commands explicitly enabled by the
following settings will be available. If "FALSE", all
features will be supported by default and only the
explicitly disabled ones will no be available.

ts:setting “source_download_allowed” Source download
Source download to connected device

ts:setting “online_change_supported” Online Change for active application

ts:setting
“boot_application_supported”

Create boot application

ts:setting “force_variables_supported”

Force values
Unforce values
Release ForceList
Add All Forces to WatchList

ts:setting “write_variables_supported“ Write values

ts:setting
“connect_device_supported”

Connect to
Disconnect from
Reset origin device

ts:setting “file_transfer_supported” File download
File upload

ts:setting
“core_application_handling_supporte

Download active application
Login active application

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 111 of 111
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description
d”

 : This setting will be needed for "tiny"
devices that do not have a runtime
system.

Logout active application
Reset active application
Reset warm active application
Reset cold active application
Reset origin active application
Start active application
Stop active application
Simulation active application
Single Cycle active application

ts:setting “breakpoints_supported”

New Breakpoint
Run to Cursor
Set next statement
Show current statement
Step Into
Step Out
Step Over
Toggle Breakpoint
Flow Control (Note that this feature can be disabled
by the following C compiler switch in the runtime in
the CmpAppBP component:
"APPBP_DISABLE_FLOWCONTROL")

ts:setting
“conditional_breakpoints_supported”

Used in the Breakpoints.BreakpointDialog to
hide/show the tab "Condition".
(Type: bool)

ts:setting “max_number_of_apps”

Used in the ApplicationObject-Plugin to check the
maximum numbers of allowed applications. If the
number of applications reached the specified limit,
the command to add another application will be
invisible. A setting of "-1" indicates, that there is no
upper limit for the number of applications.
(Type: int)

6.4.5.1.2 Memory layout
This sub-section of <ts:TargetSettings…> describes the memory layout of the controller. It contains all
information necessary for generating code for the compiler.

Note: With compiler version >= 3.4.2.0 all memory settings of a parent application are also set on the child application.

<ts:section name="memory-layout">
 <ts:setting name="memory-size" type="integer" access="visible">
 <ts:value>1280</ts:value>
 </ts:setting>
 <ts:setting name="input-size" type="integer" access="visible">
 <ts:value>1280</ts:value>
 </ts:setting>
 <ts:setting name="output-size" type="integer" access="visible">
 <ts:value>1280</ts:value>
 </ts:setting>
 <ts:setting name="retain-size" type="integer" access="visible">
 <ts:value>1280</ts:value>
 </ts:setting>
 <ts:setting name="retain-in-own-segment" type="boolean" access="visible">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="pack-mode" type="integer" access="visible">
 <ts:value>8</ts:value>
 </ts:setting>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 112 of 112
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <ts:setting name="stack-alignment" type="integer" access="visible">
 <ts:value>4</ts:value>
 </ts:setting>
 <ts:setting name="code-segment-size" type="integer" access="visible">
 <ts:value>65536</ts:value>
 </ts:setting>
 <ts:setting name="data-segment-size" type="integer" access="visible">
 <ts:value>65536</ts:value>
 </ts:setting>
 <ts:setting name="code-segment-prolog-size" type="integer" access="visible">
 <ts:value>16</ts:value>
 </ts:setting>
 <ts:setting name="additional-areas" type="boolean" access="visible">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="max-stack-size" type=" integer" access="visible">
 <ts:value>40000</ts:value>
 </ts:setting>
 <ts:setting name="max-stack-size-external-call" type=" integer" access="visible">
 <ts:value>3000</ts:value>
 </ts:setting>
 <ts:section name="areas">
 <ts:setting name="number" type="integer" access="visible">
 <ts:value>1</ts:value>
 </ts:setting>

 <ts:section name="area_0">
 <ts:setting name="area_flags" type="integer" access="visible">
 <ts:value>0x10</ts:value>
 </ts:setting>
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0xffBf</ts:value>
 </ts:setting>
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>262144</ts:value>
 </ts:setting>
 <ts:setting name="maximal-area-size" type="integer" access="visible">
 <ts:value>262144</ts:value>
 </ts:setting>
 <ts:setting name="allocation-plus-in-percent" type="integer" access="visible">
 <ts:value>0</ts:value>
 </ts:setting>
 <ts:setting name="start-address" type="integer" access="visible">
 <ts:value>0x34020218</ts:value>
 </ts:setting>
 </ts:section>
 </ts:section>
</ts:section>

XML Tag Description

ts:section
”memory-layout”

Contains information about the runtime system memory layout

ts:setting
"memory-size"

Size of the memory segment in bytes (%M.-Addresses)

ts:setting
"input-size"

Size of the input segment of the process map (inputs, %I-
Addresses)

ts:setting
"output-size"

Size of the output segment of the process map (outputs, %Q-
Addresses)

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 113 of 113
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description

ts:setting
"retain-size"

Size of the retain segment

IMPORTANT: If the retains are stored in an SRAM or NVRAM in
the controller, a value that is 24 bytes less than the value actually
available in the controller must be specified here! This is used for
saving an ID in the retain memory through which consistency of the
retain data with respect to the IEC application can be ensured.

ts:setting
"retain-in-own-
segment"

1= retain data are stored in their own segment in the controller
0= retain data are stored in the same segment as all volatile data
of an IEC application (Default is 1)

as from V3.3!:

ts:setting
“dynamic-retain”

ts:setting
“dynamic-persistent”

1= If you define a retain area with dynamic size (area-flag 4), the
size of the retain (persistent) area will be calculated dynamically
and allocated according to the actual need. If no retain (persistent)
data is needed, no area will be allocated during download.
Note: “retain-in-own-segment” must be 1. “retain-size” must be 0.

If retain (persistent) data is newly needed for download or online
change, the size of the area will be calculated once according to
the settings in device description (min. area size, allocation plus in
percent). For subsequent online changes no additional areas will
be allocated, so the memory might be not sufficient even if a full
new download would work.

ts:setting
"constants-in-own-
segment"

type="boolean"

1= constants of type userdef, array or string will be located in a
defined code area.
Notes:

1. only constant initial values are allowed for those variables

2. the initial value of these variables will be downloaded as an array of bytes
together with the program code

3. there is no code for initialization of these variables, i.e. a reset will not change
these variables after they e.g. have been changed by wrong usage of pointers.

4. The setting with compiler version >=3.4.4.10 effects that all variables that are
initialized with attribute ‘blob_init_const’ get allocated to the area with the constant
section flag.

Example:
With the following memory-layout in the target settings, all constant arrays will be
located to area 1 (same as code), all non-constant variables will be located to area
0:
<ts:section name="memory-layout">
 [...]
 <ts:setting name="constants-in-own-segment" type="boolean" access="visible">
 <ts:value>true</ts:value>
 </ts:setting>
 <ts:section name="areas">
 <ts:setting name="number" type="integer" access="visible">
 <ts:value>4</ts:value>
 </ts:setting>
 <ts:section name="area_0">
 <!-- Global data memory -->
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0xfe9d</ts:value>

 </ts:setting>
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x100000</ts:value>
 </ts:setting>
 <ts:setting name="allocation-plus-in-percent" type="integer"
access="visible">
 <ts:value>30</ts:value>
 </ts:setting>
 </ts:section>
 <ts:section name="area_1">
 <!-- Global code and constant memory -->

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 114 of 114
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0x0042</ts:value>
 </ts:setting>
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x100000</ts:value>
 </ts:setting>
 <ts:setting name="allocation-plus-in-percent" type="integer"
access="visible">
 <ts:value>30</ts:value>
 </ts:setting>
 </ts:section>
 <ts:section name="area_2">
 <!-- RETAIN memory -->
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0x0020</ts:value>
 </ts:setting>
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x1000</ts:value>
 </ts:setting>
 <ts:setting name="allocation-plus-in-percent" type="integer"
access="visible">
 <ts:value>20</ts:value>
 </ts:setting>
 </ts:section>
 <ts:section name="area_3">
 <!-- PERSISTENT RETAIN memory -->
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0x0120</ts:value>
 </ts:setting>
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x1000</ts:value>
 </ts:setting>
 <ts:setting name="allocation-plus-in-percent" type="integer" access="visible">
 <ts:value>20</ts:value>
 </ts:setting>
 </ts:section>
 </ts:section>
</ts:section>

ts:setting
"online-change-in-own-
segment"

type="boolean"

1= Online Change (o.c.) code is created as an application in a free
code area; during first download two code areas get allocated; at
each o.c. the code is allocated to the currently free area. For
initialization all function pointers must be rewritten - even the
pointers of functions, the code of which has not been changed –
because those get shifted to another location.
However: Writing these pointers has not to be protected from
interrupts; so the part to be protected during initialization does not
change, which allows to keep the jitter small (precondition: writing
of the pointer must be atomic!).

Note: This setting should be combined with the optimized online
change mechanism (see setting
“optimized_online_change”, chap. 6.4.5.1.1); otherwise
there could be jitter effects, because all function pointers
have to be reassigned after o.c. This can take some time,
in combination with the setting "optimized_online_change"
all non-changed functions will be initialized in the
communication task without effect on the iec-tasks.

Although the double memory of the maximum application size is
necessary, this option has two advantages:
- No extra boot project required
- No fragmentation
- CRC over code and constants possible even after online change

0= default: Online Change will take place in the same code area

ts:setting
"pack-mode"

4= structures are created 4-byte-aligned, i.e.:

BYTE on BYTE limits

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 115 of 115
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description
WORD on WORD limits
DWORD on DWORD limits
LINT on DWORD limits

8= structures are created 8-byte-aligned, i.e.:
BYTE on BYTE limits
WORD on WORD limits
DWORD on DWORD limits
LINT on LINT limits
[Default=8]
Within a structure, bytes are aligned to byte limits, words to word
limits etc.
On the other hand a variable of type of a structure will be aligned to
the limit of the biggest non-structured data type which is contained.

ts:setting
"stack-alignment"

Alignment of the stack during function calls
[Default=4]

ts:setting
"code-segment-size"

Use this setting if your controller has segmented code. A POU may
not grow larger than one code segment, and is never placed over
segment borders. No entry or value 0xffffffff is interpreted as « no
segmentation ».

ts:setting
"data-segment-size"

Use this setting if your controller has segmented data. One variable
may not grow larger than one data segment, and one variable is
never placed over segment borders. No entry or value 0xffffffff is
interpreted as « no segmentation ».

ts:setting
“byte-addressing”

TRUE: The compiler and the devices will use byte-addressing
mode (ADR(%IW1)=ADR(%IB1)

FALSE (default): Word addressing mode is used:
(ADR(%IW1)=ADR(%IB2)

ts:setting
“bit-word-addressing”

TRUE: Word addressing mode is used on bits;
ADR(%IW1)=ADR(%IX1);

FALSE (default): byte addressing mode is used:
ADR(%IW1)=ADR(%IX2)
Note: Setting “bit-byte-addressing” is obsolete.

ts:setting
”additional-areas”

TRUE: additional areas will be used for online change, if code or
data exceeds the memory in the specified areas.

ts:setting
”code-segment-prolog-
size”

If this value is != 0, the specified size at the beginning of each code
area is not used for allocation of IEC-Code. Thus the runtime
system is free to add specific code in this place.

At the moment this setting is only used for ARM-Targets, in this
case the prolog contains a jump to the breakpoint handling routine
in the runtime system. The code patched for Breakpoints is a jump
to offset 0 in the area. Therefore we can avoid Exception handling
for handling breakpoints.

ts:setting
”address-assignment-
guid”

Specifies the GUID which determines the address assignment
strategy. The GUID is defined in the plug-in.

as from V3.5 SP 2!:
ts:section "static-area"

New possibility to define an area for both: retain and persistent
data. If the memory-management contains a static-area, this area
will replace any area containing Retain or Persistent data. The only
settings that are possible for this area is size and address. The
area will then allocate memory for persistent variables and retain
variables. Persistent Variables are allocated with rising addresses

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 116 of 116
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description
and start at 0. Retain variables are allocated with falling
addressesstarting at Area-SIZE.

Since this setting is evaluated from codesys-versions >= 3.5.2.0,
you should keep the old area definitions in the areas section for
compatibility with previous codesys versions. In the order of areas,
the static area will be inserted last!

Example:
<ts:section name="static-area">
<ts:setting name="size" type="integer" access="visible">
 <ts:value>0x10000</ts:value>
</ts:setting>
<ts:setting name="start-address" type="integer"
access="visible">
 <ts:value>0xba5eadd</ts:value>
</ts:setting>
</ts:section>

You should use this possibility, if the device is not suitable for
handling several applications with retain variables. Then you can
set the size to the maximum possible amount of retain data (minus
24 bytes -> see note for static-area\size).

as from V3.5 SP 2!:
ts:setting "static-
area\size"

This is the size of the static area, this size will be allocated on the
controller for each application, despite the actual need of the
application. If the application defines more retain and persistent
data than available, the compiler will generate an error.

IMPORTANT: If retains are stored in an SRAM or NVRAM in the
controller, a value that is 24 bytes less than the value actually
available in the controller must be specified here! This is used for
saving an ID in the retain memory through which consistency of the
retain data with respect to the IEC application can be ensured.

as from V3.5 SP 2!:
ts:setting "static-
area\start-address"

The start-address of the static memory, if applicable. Do not define
this setting, if the address is not the same on each device at any
time. Without a start-address, relocation information will be
generated along with the code, to relocate address accesses on
the controller after download.

ts:section
”areas”

Contains information about what areas to allocate on the runtime
system.

ts:section
”area_<num>”

Contains information about the area with index <num>.

ts:setting
”area_flags”

What kind of area is to allocate. There are two possibilities:
// this is the setting for an area that is
// allocated dynamically on the runtime system
// its size is typically not fixed. This is the
// default
DynamicSize = 0x4,
// setting for an area of fixed size, and with
// fixed address. Use this setting only if you
// have a reserved area for your data and the
// code should not be relocated. This setting
// does not work with multiple applications!
Fixed = 0x10,

ts:setting
”area\flags”

This setting defines what kind of data is located in this area. The
following values are possible:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 117 of 117
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description

 Data = 0x1, // “normal” data
Constant = 0x2, // constant data (not
 // used at the moment
Input = 0x4, // input segment (%I)
Output = 0x8, // output segment (%Q)
Memory = 0x10, // memory segment (%M)
Retain = 0x20, // retain segment
Code = 0x40, // code
Persistent = 0x100, // persistent data

ts:setting
”area/minimal-area-
size”

The minimal size of the area, despite of the needed memory.
(additional size will be used for online changes).

IMPORTANT: If this area has the Retain flag and if retains are
stored in an SRAM or NVRAM in the controller, a value that is 24
bytes less than the value actually available in the controller must be
specified here! This is used for saving an ID in the retain memory
through which consistency of the retain data with respect to the
IEC application can be ensured. For persistent variables, the actual
available size for the program is 44 Bytes less than the specified
size, these bytes are used for identification information!

ts:setting
” area/maximal-area-
size”

The maximal size of the area. If more space is required and no
other area can be used, an error will be displayed

ts:setting
“area/allocation-plus-
in-percent”

The size allocated for the area will be this percentage larger than
required for the data.

Thus, the calculation of the area size is this:
TestSize := neededsize + neededsize * allocation-plus/100;
Size := MIN(MAX(minimalsize, TestSize), maximalsize)

Any additional size in the area will be used for online changes, as
long as possible.

ts:setting
”area/start-address”

Only used for Areas with Flag “FixedSize”!
The start address for the area as used on the runtime system. If
the area contains data (variables), any reference in code to this will
not be relocated on the runtime system, but will contain the correct
address.

ts:setting
“minimal-structure-
granularity”

type:integer

Special setting for Tricore

Tricore EABI documentation:
Padding must be applied to the end of a union or structure to make
its size a multiple of the alignment.
 ... To facilitate copy operations, any structure larger than 1 Byte
must have a minimum 2 Byte alignment, even if its only members
are byte elements

i.e: set minimal-structure-granularity to 2 in this case

Default: -1 (value to ignore)

ts:setting
“max-stack-size”

type:integer

Enables the check of the used stack at compile time. The
maximum number of bytes available on the runtime system.

ts:setting
“max-stack-size-
external-call”

type:integer

Maximum number of bytes of stack required by external function
calls. This value is considered for calculating the used stack for
every IEC-POU that calls an external function.

6.4.5.1.2.1 Some Use cases of memory layout settings

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 118 of 118
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

In the following we have listed a number of problems the average editor of a device description
will face. Of course there might as many memory layouts as there are target devices, but some
settings are very common for classes of devices.

Runtime system with lot of RAM, areas can be allocated dynamically:
You will define one Area containing every kind of Data and Code (maybe except RETAIN or
PERSISTENT see 3.). The size should not be limited. Minimal size should be rather big
(e.g: the CODESYS Control device defines 1048576 bytes) to prevent memory fragmentation. A typical
value for allocation-plus-in-percent is 30.

Example CODESYS Control device description:

<ts:section name="memory-layout">
 <ts:setting name="memory-size" type="integer" access="visible">
 <ts:value>1280</ts:value>
 </ts:setting>
 <ts:setting name="input-size" type="integer" access="visible">
 <ts:value>1280</ts:value>
 </ts:setting>
 <ts:setting name="output-size" type="integer" access="visible">
 <ts:value>1280</ts:value>
 </ts:setting>
 <ts:setting name="retain-size" type="integer" access="visible">
 <ts:value>1280</ts:value>
 </ts:setting>
 <ts:setting name="retain-in-own-segment" type="boolean" access="visible">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="pack-mode" type="integer" access="visible">
 <ts:value>8</ts:value>
 </ts:setting>
 <ts:setting name="stack-alignment" type="integer" access="visible">
 <ts:value>4</ts:value>
 </ts:setting>
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>1048576</ts:value>
 </ts:setting>
 <ts:setting name="allocation-plus-in-percent" type="integer" access="visible">
 <ts:value>30</ts:value>
 </ts:setting>
 <ts:section name="areas">
 <ts:setting name="number" type="integer" access="visible">
 <ts:value>2</ts:value>
 </ts:setting>
 <ts:section name="area_0">
 <!-- Global and RETAIN memory -->
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0xfeff</ts:value>
 </ts:setting>
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x100000</ts:value>
 </ts:setting>
 <ts:setting name="allocation-plus-in-percent" type="integer" access="visible">
 <ts:value>30</ts:value>
 </ts:setting>
 </ts:section>
 <ts:section name="area_1">
 <!-- PERSISTENT RETAIN memory -->
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0x120</ts:value>
 </ts:setting>
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x10000</ts:value>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 119 of 119
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 </ts:setting>
 <ts:setting name="allocation-plus-in-percent" type="integer" access="visible">
 <ts:value>0</ts:value>
 </ts:setting>
 </ts:section>
 </ts:section>

1. Small system with a limited RAM, Code in Flash:
Define two areas (plus retain or persistent):
One area containing all normal data with a fixed size at a fixed address, to avoid relocation
in the runtime system:

area_0.flags := 0xffbf; // all except 0x40
area_0.area_flags := 0x10; // fixed size
area_0.minimal-area-size := <size>;
area_0.maximal-area-size := <size>;
area_0.allocation-plus-in-percent := 0;
area_0.start-address := <address of area pointer in runtime system>;

One area containing only code.

area_1.flags := 0x40; // only 0x40
area_1.minimal-area-size := <size>;
area_1.maximal-area-size := <size>;
area_1.allocation-plus-in-percent := 0;

The number of applications must be limited to 1 for this runtime system, otherwise two
applications would share the same memory. Additional areas should also be set false.

2. Usage of RETAIN:
Retain is handled like input or output. The retain data is allocated as one segment in an
appropriate area. If you want to define one area containing only retain data, you should
choose the following settings:

retain-size : <size>
retain-in-own-segment : 1 // this is also the default
area_x/flags : 0x20
area_x/ minimal-area-size : <size_x>
area_x/ maximal-area-size : <size_x>
area_x/allocation-plus-in-percent : 0

Then area_x will contain exactly one segment for the retain data of the required size. In
case of the settings of the CODESYS Control device description example shown above
only one segment of retain data will be mapped in the normal data area.

Example of SysMemAllocArea in SysMem<OS>.c:

This is a very simple example of the function SysMemAllocArea. It assumes that 2 areas
are defined in the devdesc file: One for retain data (flags: 0x20), and one for all the rest
(code, data, inputs, outputs) (flags: 0xFFDF). It returns pointers to these 2 areas. The
retain area is located in some SRAM, the other area is static memory.

Please note that this example only covers the memory of one application. If a second
application would be downloaded to this controller, the same addresses would be
assigned, and this would lead to some memory mismatch between the applications.
#define RETAIN_SIZE 0x1000 /* Size of retain data */

#define MEMORY_SIZE 0x100000 /* Static memory for code and data */

char pMem[MEMORY_SIZE];

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 120 of 120
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

void* CDECL SysMemAllocArea(char *pszComponentName, unsigned short
usType, unsigned long ulSize, RTS_RESULT *pResult)
{
if (usType == 0x20) /* Retain */

{
 /* Check size */
 If (ulSize > RETAIN_SIZE)
 {
 if (pResult != NULL)
 *pResult = ERR_NOMEMORY;
 return NULL;
 }
 /* Return pointer to SRAM or NVRAM */
 if (pResult != NULL)
 *pResult = ERR_OK;
 return (void*)0x12345678; /* Pointer to SRAM or NVRAM
*/
}

else /* all other data */
{

 /* Check size */

 if (ulSize > MEMORY _SIZE)
 {

 if (pResult != NULL)
 *pResult = ERR_NOMEMORY;
 return NULL;

 }
 /* Return pointer to SRAM or NVRAM */
 if (pResult != NULL)
 *pResult = ERR_OK;
 return (void*)pMem; /* Pointer to static buffer */

}
}

3. Usage of PERSISTENT:
At the moment, each application can only contain one list of persistent data. This list can
be either PERSISTENT or RETAIN PERSISTENT. The persistent area can’t contain
anything else than persistent data! The persistent area contains a header with a
checksum for the current list, and the length of the current list. We upload this information
at login and if both values did not change we estimate the list to be the same. All other
persistent variables are located one after the other - according to the pack mode - in the
persistent area. An example for a persistent area shows the CODESYS Control example
above. Note that the RETAIN PERSISTENT area will not contain any retain data.

6.4.5.1.2.2 Child applications
Child applications have access to any data and code of their parent applications. A child application
cannot handle own input, output, memory, retain or persistent data, so the area for any child
application is created implicitly and not due to target settings.

• With compiler version < 3.4.2.0 child applications have one area with the following settings:

Child_area.flags := 0x43; // code and all data
Child_area.minimal-area-size := 0x100000;
Child_area.allocation-plus-in-percent := 100;

Additional areas needed for online change will have the same settings.

• With compiler version >= 3.4.2.0 all memory settings of the parent application automatically will also
be set on the child application.

Additional areas needed for online change will have the same settings.

6.4.5.1.3 Online

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 121 of 121
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

<ts:section name="online">
 <ts:setting name="customizedonlinemgr" type="boolean" access="edit">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="customized-fileupload" type="string" access="edit">
 <ts:value>4B84C13B-D82E-461c-9A3E-47E2AFAD3A2D</ts:value>
 </ts:setting>
 <ts:setting name="customized-filedownload" type="string" access="edit">
 <ts:value>46F722D1-A347-44ca-B1D6-55A3CE398497</ts:value>
 </ts:setting>
</ts:section>

XML-Tag Description

ts:section
"online"

Online section

ts:setting
"customizedonlinemgr”

type=”boolean”
If TRUE, a customer specific OnlineMgr will be used for
diagnosis.

ts:setting
"customized-fileupload"

type=”string”
This entry serves to implement an „own“ file upload. The value
is the typeguid of the implemented interface
(IFileUpload).

ts:setting
"customized-filedownload"

type=”string”
This entry serves to implement an „own“ file download. The
value is the typeguid of the implemented interface
(IFileDownload).

6.4.5.1.4 Task configuration
This sub-section of <ts:TargetSettings…> describes the task configuration options for the <device>.

Example:

<ts:section name="taskconfiguration">
 <ts:setting name="supportmicroseconds" type="boolean" access="readonly">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="supportfreewheeling" type="boolean" access="readonly">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="supportinterval" type="boolean" access="readonly">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="supportevent" type="boolean" access="readonly">
 <ts:value>0</ts:value>
 </ts:setting>
 <ts:setting name="supportexternal" type="boolean" access="readonly">
 <ts:value>0</ts:value>
 </ts:setting>
 <ts:setting name="supportextendedwatchdog" type="boolean" access="readonly">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="defaulttaskpriority" type="integer" access="readonly">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="mintaskpriority" type="integer" access="readonly">
 <ts:value>0</ts:value>
 </ts:setting>
 <ts:setting name="maxtaskpriority" type="integer" access="readonly">

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 122 of 122
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <ts:value>31</ts:value>
 </ts:setting>
 <ts:setting name="maxnumoftasks" type="integer" access="readonly">
 <ts:value>100</ts:value>
 </ts:setting>
 <ts:setting name="maxeventtasks" type="integer" access="readonly">
 <ts:value>3</ts:value>
 </ts:setting>
 <ts:setting name="maxintervaltasks" type="integer" access="readonly">
 <ts:value>3</ts:value>
 </ts:setting>
 <ts:setting name="maxexternalevents" type="integer" access="readonly">
 <ts:value>3</ts:value>
 </ts:setting>
 <ts:setting name="maxfreetasks" type="integer" access="readonly">
 <ts:value>3</ts:value>
 </ts:setting>
 <ts:setting name="cycletimedefault" type="string" access="readonly">
 <ts:value>t#20ms</ts:value>
 </ts:setting>
 <ts:setting name="cycletimemin_us" type=" integer " access="readonly">
 <ts:value>0</ts:value>
 </ts:setting>
 <ts:setting name="cycletimemax_us" type=" integer " access="readonly">
 <ts:value>0x7FFFFFFF</ts:value>
 </ts:setting>
 <ts:setting name="watchdogtimemax_us" type=" integer " access="readonly">
 <ts:value>400</ts:value>
 </ts:setting>
 <ts:setting name="maxwatchdogsensitivity" type=" integer " access="readonly">
 <ts:value>10</ts:value>
 </ts:setting>
 <ts:setting name="systemtick" type="string" access="visible">
 <ts:value>LTIME#250us</ts:value>
 </ts:setting>
 <ts:setting name="externalevents" type="cdata" access="hide">
 </ts:setting>
 <ts:setting name="systemevents" type="cdata" access="readonly">
 <![CDATA[]]>
 </ts:setting>

 <ts:section name="priorityinfo">
 <ts:setting name="priority-1" type="string" access="visible">
 <ts:value>realtime priority</ts:value>
 </ts:setting>
 <ts:setting name="priority-2" type="string" access="visible">
 <ts:value>medium priority</ts:value>
 </ts:setting>
 </ts:setting>

 <ts:section name="applicationtasks">
 <ts:section name="dataserver">
 … see below for detailed example and description
 </ts:section>
 </ts:section>
 </ts:section>

6.4.5.1.4.1 Application tasks
For Visualization and DataServer the programming system automatically creates tasks, per default with
the lowest possible priorities. To overwrite the defaults of priority and cycle time for these tasks, the

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 123 of 123
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

following entries in sections “dataserver” res. “visualization” might be used, which must be positioned
within a section “applicationtasks” and this again within section “taskconfiguration”:

Example:

<ts:section name="applicationtasks">
 <ts:section name="dataserver">
 <ts:setting name="defaulttaskpriority" type="integer" access="visible">
 <ts:value>25</ts:value>
 </ts:setting>
 <ts:setting name="cycletimedefault" type="string" access="visible">
 <ts:value>t#200ms</ts:value>
 </ts:setting>
 </ts:section>
 <ts:section name="visualization">
 <ts:setting name="defaulttaskpriority" type="integer" access="visible">
 <ts:value>24</ts:value>
 </ts:setting>
 <ts:setting name="cycletimedefault" type="string" access="visible">
 <ts:value>t#150ms</ts:value>
 </ts:setting>
 </ts:section>
</ts:section>

XML Tag Description Default

ts:section
"taskconfiguration"

Task configuration section

ts:setting
"supportmicroseconds”

1= IEC task cycles in the microsecond range
are supported.
0= IEC task cycles in the microsecond range
are NOT supported. Only tasks in the
millisecond range can be projected.

1

ts:setting
"supportfreewheeling"

1= free-running IEC tasks are supported
0= free-running IEC tasks are NOT supported

0

ts:setting
"supportinterval"

1= cyclical IEC tasks are supported
0= cyclical IEC tasks are NOT supported

0

ts:setting
"supportevent"

1= event-driven IEC tasks are supported
0= event-driven IEC tasks are NOT
supported

0

ts:setting
"supportexternal"

1= external event-driven IEC tasks are
supported
0= external event-driven IEC tasks are NOT
supported

0

ts:setting
"supportextendedwatchdog"

1= watchdog monitoring of IEC tasks is
supported
0= watchdog monitoring of IEC tasks is NOT
supported

0

ts:setting
"defaulttaskpriority"

Standard priority of an IEC task 1

ts:setting
"mintaskpriority"

Minimum priority for an IEC task (maximum
task priority)

0

ts:setting
"maxtaskpriority"

Maximum priority for an IEC task (minimum
task priority)

31

ts:setting Maximum number of IEC tasks 0

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 124 of 124
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description Default
"maxnumoftasks"

ts:setting
"maxeventtasks"

Maximum number of event-driven IEC tasks

ts:setting
"maxintervaltasks"

Maximum number of cyclical IEC tasks

ts:setting
"maxexternalevents"

Maximum number of external event-driven
IEC tasks

ts:setting
"maxfreetasks"

Maximum number of free-running IEC tasks

ts:setting
"cycletimedefault"

Default values for the cycle time

10

ts:setting
"cycletimemin_us"

Minimum length of time interval; a value
underrunning the minimum length within the
task configuration will lead to compile errors

0

ts:setting
"cycletimemax_us"

Maximum length of time interval; a value
exceeding the maximum length within the
task configuration will lead to compile errors

0x7FFFFFFF

ts:setting
" watchdogtimemax_us "

Maximum watchdog time; a value exceeding
the maximum length within the task
configuration will lead to compile errors

400000000

ts:setting
maxwatchdogsensitivity "

Maximum watchdog sensitivity; a value
exceeding the maximum will lead to compile
errors

10

ts:setting
"systemtick"

String value; The cycle time must be a
integral multiple of the systemtick; example:
<ts:setting name="systemtick"
type="string" access="visible">
 <ts:value>LTIME#250us</ts:value>
</ts:setting>

ts:setting
"externalevents"

List of names of supported external events

ts:setting
"supportprofiling"

1=The Profiling functionality is supported, the
resp. dialogs are available in the Task-Editor

ts:setting
“watchdog-enabled”

1= IEC Task Watchdog is enabled

ts:setting
“default-watchdog-time”

String, defining the default watchdog time

ts:setting
“default-watchdog-
sensitivity”

String, defining the default watchdog
sensitivity

ts:section
“systemevents”

subsection within section “taskconfiguration”
here the particular events must be specified
which should be available in the Event
Configuration of the programming system
(Task Configuration dialog); an event is
uniquely specified by component-id, event-id,
parameter-id and parameter-version

ts:setting
“library”

String: name of a library containing general
functions needed for event handling; the
library will be included automatically in the

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 125 of 125
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description Default
project when using the event function;
example:
</ts:setting>

<ts:setting name="library" type="string"
access="visible">
<ts:value>CmpApp, 3.5.0.0
(System)</ts:value>
</ts:setting>

ts:section “systemevent” subsection within section “systemevents” for
the settings concerning system events; an
event is uniquely specified by component-id,
event-id, parameter-id and parameter-
version;

ts:setting
“eventname”

String, name for event (can be defined here
as desired)

ts:setting
“description”

String, short description for event (can be
defined here as desired)

ts:setting
“component-id”

Integer, ID of the event as defined in the
library specified below by setting "library;
example:
<ts:setting name="component-id"
type="integer" access="visible">
<ts:value>2</ts:value>

ts:setting
“event-id”

Integer, ID of the event as defined in the
library specified below by setting "library;
example:
<ts:setting name="component-id"
type="integer" access="visible">
<ts:value>2</ts:value>

ts:setting
“parameter-id”

Integer, ID of the event parameter, as defined
in the library specified by setting "library" (see
below)

ts:setting
“parameter-version”

Integer, version of the event parameter, as
defined in the library specified below by
setting "library"

ts:setting
“parameter-struct”

String: name of the parameter structure as
defined in the library specified below by
setting "library"; example:
<ts:setting name="parameter-struct"
type="string"
access="visible"><ts:value>CmpApp.EVTPARAM
_CmpAppStop</ts:value>

</ts:setting>

ts:setting
“library”

String: name of a library containing the event
function; this library will be included
automatically in the project when using the
event function; example:
</ts:setting>

<ts:setting name="library" type="string"
access="visible">
<ts:value>CmpApp, 3.5.0.0
(System)</ts:value>
</ts:setting>

ts:section
"applicationtasks"

subsection with section “taskconfiguration” for
setting the priority and cycletime of

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 126 of 126
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description Default
Visualizaton resp. DataServer tasks

ts:section “dataserver” subsection within section “applicationtasks”
for the dataserver task settings

ts:section “visualization” subsection within section “applicationtasks”
for the visualization task settings

ts:setting
“defaulttaskpriority”

priority of dataserver task, value e.g. “25” lowest
possible

ts:setting “cycletimedefault” cycle time of data server task in time format,
value e.g. t#200ms

ts:section "priorityinfo" In this section the meaning of the task
priorities can be described. An information
icon shows the priority information in the
tooltip of the configuration window

6.4.5.1.5 Network variables
Network variables can be used for data exchange between two or several PLCs, currently possible for
UDP networks. The values of the variables are exchanged automatically via broadcast telegrams.
These services are not confirmed by the protocol, which means that it is not checked, whether a
message is received by the addressee. The exchange of network variables is a 1 (sender) to n
(recipients) – connection. Network Variables must be defined in fix variables lists as well in the sender
as in the receiver devices and their values will be transmitted via broadcasting.

In sub-section “networkvariables” of <ts:TargetSettings…> the following settings concerning the
support of this functionality can be defined:

Example:

<ts:section name="networkvariables">
 <ts:section name="protocols">
 <ts:setting name="numofprotocols" type="integer" access="visible">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:section name="protocol1">
 <ts:setting name="protocolname" type="string" access="visible">
 <ts:value>UDP</ts:value>
 </ts:setting>
 <ts:setting name="library" type="string" access="visible">
 <ts:value>NetVarUdp</ts:value>
 </ts:setting>
 <ts:setting name="libraryversion" type="string" access="visible">
 <ts:value>*</ts:value>
 </ts:setting>
 <ts:setting name="packetsize" type="integer" access="visible">
 <ts:value>256</ts:value>
 </ts:setting>
 <ts:setting name="max-num-sender" type="integer" access="visible">
 <ts:value>2</ts:value>
 </ts:setting>
 <ts:setting name="max-num-receiver" type="integer" access="visible">
 <ts:value>2</ts:value>
 </ts:setting>
 <ts:setting name="max-gvl-size" type="integer" access="visible">
 <ts:value>5</ts:value>
 </ts:setting>
 <ts:setting name="min-interval" type="string" access="visible">
 <ts:value>T#50ms</ts:value>
 </ts:setting>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 127 of 127
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <ts:setting name="max-interval" type="string" access="visible">
 <ts:value>T#100ms</ts:value>
 </ts:setting>
 </ts:section>
 </ts:section>
</ts:section>

ts:section
"networkvariables"

Network Variables section

ts:section
"protocols"

Network Protocols section -

ts:setting
"numofprotocols"

Number of supported protocols (currently 1,
because only UDP is supported)

-

ts:section
"protocol<n>"

Protocol section -

ts:setting
“protocolname”

Name of the protocol

ts:setting
"library"

Name of needed library (must be installed) -

ts:setting
"libraryversion"

Version of above specified library

Note: This must not be set to a fix version, but
for the newest (-> it must be set to "*"). All
other settings may lead to problems with the
current project.

-

ts:setting
"packetsize"

Size of packets of the resp. protocol (UDP:
256)

-

ts:setting
“max-num-sender”

Maximal number of GVLs of an application that
can be send

ts:setting
“max-num-receiver”

Maximal number of GVLs of an application that
can be received

ts:setting
“max-gvl-size”

Maximal number of bytes that can be send
with one network variable list (limits the
number of variables)

ts:setting
“min-interval”

The minimum transmission time that can be
configured

ts:setting
“max-interval”

The maximum transmission time that ca be
configured

6.4.5.1.6 Code generator
In sub-section “codegenerator” of <ts:TargetSettings…> all code generator options for the target
processor are set.

Example:

<ts:section name="codegenerator">
 <ts:setting name="CPU" type="codegenerators" access="edit">
 <ts:value>Intel X86</ts:value>
 </ts:setting>
 <ts:setting name="Floating Point Unit" type="boolean" access="visible">
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="Breakpoint Size" type="integer" access="visible">

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 128 of 128
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <ts:value>5</ts:value>
 </ts:setting>
 <ts:setting name="external-linkage" type="string" access="visible">
 <ts:value>MUL,DIV</ts:value>
 </ts:setting>
 <ts:setting name="codegenerator-guid" type="string" access="visible">
 <ts:value>{C746DD9C-011F-4ab9-A555-EB14C69F50CF}</ts:value>
 </ts:setting>
 <ts:setting name="codegenerator-version-constraint" type="string" access="visible">
 <ts:value>newest</ts:value>
 </ts:setting>
</ts:section>

XML Tag Description

ts:section
"codegenerator"

Codegenerator section

ts:setting
"CPU"

Processor type

ts:setting
"Floating Point Unit"

1=Floating point unit present
0=FPU missing
[Default=1]

ts:setting
"Breakpoint Size"

Size of the breakpoint OpCode in bytes:
Intel X86= 5

ts:setting
"external-linkage"

The functions listed will be implemented by external code
(actually valid for MUL, DIV for NIOS only)

ts:setting
"codegenerator-guid"

Internal CODESYS GUID:
Intel X86= {C746DD9C-011F-4ab9-A555-EB14C69F50CF}

ts:setting "codegenerator-
version-constraint"

Version limitation of the code generator:
[Default=newest]

ts:setting
maximum_num_applications

Maximum number of applications, which can be used in the
project without getting a warning at compile time. Also
implicitly generated applications will be regarded, like e.g.
symbol application. You might use this setting to control the
number of applications for download to the target system.
Note however that the applications for a certain target may
be distributed over several projects, so that a download
might fail even if there has been no warning at compilation
of a particular project.

ts:setting "retain-in-cycle"

Default: 0, type=”boolean”
If the value for this setting is “1” and compiler version is
>=3.2.2.20, then all retain parameters will be handled in the
following way:
- All retain variables (not only that for functionblocks) are
located in the standard data memory
- Additional code is generated for all retain variable
(especially for all retains in FB-instances) to copy all retains
at the end of a cycle to the retain area.
- After booting with a project the retain variables are
initialized with the data in retain memory.
As a consequence, it is now also possible to declare
variables on direct output addresses as RETAIN variables.
Note: This behavior may have effects on code size and performance.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 129 of 129
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description

ts:setting "check-multiple-
task-output-write”

Default: 0, type=”boolean”
If the value for this setting is “1” and compiler version is
>=3.2.2.40 then it will be checked, whether two tasks are
accessing the same output. An error message will be
generated in the following cases:
- a POU called in multiple tasks writes to an output
- two POUs write to the same output and are called in
multiple tasks
- two POUs write to different bits of the same byte and are
called in multiple tasks
This is valid for variables mapped in the device configuration
(„new variable“) or via an AT-declaration, and for direct
access on IOs in the implementation code (%QX := ...).

ts:setting “reserved-registers” type=”string”

The specified register will be reserved. Value e.g. “14” in
order to reserve register R14.

ts:setting “Motorola Byte
Order”

type=”boolean”
If TRUE, Motorola Byte Order will be used (Default for
PowerPC code generators!), otherwise Intel byte order is
used (default for the other code generators and when used
in other scopes, e.g. for network variables)

ts:setting “hexfile type=”boolean”

If TRUE, the command “Generate hex file for active
application” will be available in the Build menu of the
programming system. For this At least 8 byte of code
segment prolog size is required:

<section name="memory-layout">
 <setting name="code-segment-prolog-size" type="integer"
access="visible">
 <value>8<value>

ts:setting “lreal-data-type”

ts:setting “lint-data-types>

type=”boolean”

If FALSE, the resp. 64bit datatypes are not valid; example:
 <ts:setting name="lint-data-types" type="boolean"
access="visible">
 <ts:value>0</ts:value>
 </ts:setting>
 <ts:setting name="lreal-data-type" type="boolean"
access="visible">
 <ts:value>0</ts:value>
 </ts:setting> </ts:section>

ts: setting “do-persistent-
code”

Type=”boolean” (default: 1)

In CODESYS V3 persistent variables are handled differently
to V2.3. If there are persistent variables defined in a function
block, but their instance paths are not mapped in the list of
persistent variables, then warnings resp. error messages will
be created. If do-persistent-code is set to “1”, then these
messages will be suppressed. This enables customers to
implement an own persistent handling.

ts: setting “link-all-
globalvariables”

Type=”boolean” (default: 1)

If 1 (default): All global variables of a project get
downloaded, even if no one is used. This e.g. is needed for
variables that are only used by the HMI but not by the PLC.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 130 of 130
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description

If 0: A list of global variables only get downloaded, if at least
one is used

ts: setting “multithreading” Type=”boolean” (default: 1)

If 1 (default): The CODESYS compiler uses multiple threads
to increase the compile speed.

If 0: The CODESYS compiler uses just one single thread to
build.

Note: Because of timing effects, the result of a
multithreading build might be different across single
compiles.

ts: generate_direct_calls Type=”Boolean” (default: 0)

Compilerversion >= 3.5.1.0

Programm and function calls are done direct and not via a
function pointer. Online change must be switched off in the
target settings.

Implemented for C166, ARM, MIPS and CortexM3

ts: c-calling-convention Type:”Boolean” (default: 0)

Compilerversion >= 3.5.1.0

External function calls are performd according the C calling
conventions.

Implemented for ARM (intel byte order) without FPU under
CE and for x86 under Windows

Additional settings for TI-DSP Codegenerator:

XML Tag Description

ts: setting “dp-register-
addressing”

Type=”boolean” (default: 0)

For compiler versions >=3.5.1.0

If 0 (default): 32 bit addressing (standard)

If 1: DP registers is used for global data access. This
reduces the code size for global data access. 22 bit
addressing.

Preconditions:

1. all area sections must have the following settings for fix
location:

<ts:setting name="area_flags" type="integer"
access="visible">
 <ts:value>0x10</ts:value>
</ts:setting>
<ts:setting name="start-address" type="integer"
access="visible">
 <ts:value>0xA0000</ts:value>
</ts:setting>

Additional settings for PowerPC Codegenerator:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 131 of 131
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description

ts: setting “single-precision-
floating-point-apu”

ts: setting “double-precision-
floating-point-apu”

ts: setting “Vector Unit”

Type=”boolean” (default: 0)

Settings to support special floating point units

ts: misaligned-access Type=”Boolean” (default: 1)

Memcopy is performed 4Byte-wise. On some platform, this
misalignment may lead to alignment exceptions

Additional settings for 386 Codegenerator:

XML Tag Description
ts: setting “sse2-unit” Compilerversion >= 3.5.2.0

Type=”Boolean” (default: false)

SSE-2 unit is used for REAL/LREAL operations

Additional settings for x86-64 Codegenerator:

XML Tag Description

ts: setting “operating-system” Type=”string” (default: Empty string for Windows OS)

“Linux”: To consider special rules for the Linux operating
system (e.g.: calling conventions)

ts: setting “sse2-unit” Compilerversion >= 3.5.2.0

Type=”Boolean” (default: true)

SSE-2 unit is used for REAL/LREAL operations

Additional settings for the ARM and x86 Codegenerator:

XML Tag Description

ts: setting “c-calling-
convention”

Type=”string” (default: use 3S calling convention)

“CDECL”: To generate a C-compatible call interface for
external calls. Implemented for ARM with intel byte order
without FPU running with Windows CE and for x86 with
Windows

Additional settings for SH Codegenerator:

XML Tag Description
ts: setting “CPU” Type=”string” (default: “SH-3”)

Possible values: “SH-2”, “SH-2A”, “SH-3”, “SH-4”
ts: setting “rts-
globaldatapointer-area”

Type=”integer” (default: -1 = do not use)

Global data in the specified area is accessed via register 10
holding the base address initialised by the runtime system.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 132 of 132
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

6.4.5.1.7 Device configuration
In sub-section “deviceconfiguration” of <ts:TargetSettings…> settings for the device configuration via
the CODESYS device editor can be defined.

Example:

<ts:section name="deviceconfiguration">
 <ts:setting name=”mapping-changeable” type=”boolean” access=”visible”>
 <ts:value>false</ts:value>
 </ts:setting>
 <ts:setting name=”simulation-disabled” type=”boolean” access=”visible”>
 <ts:value>true</ts:value>
 </ts:setting>

XML Tag Description

ts:setting
“ mapping-changeable
“

True or 1: if mapping could be changed between creating new
variable and map to existing variable is possible. (Default, if section
“target settings” is not available in the device description)
False: Only creating new variable is possible (behaviour like
CODESYS V2.x)

ts:setting
“simulation-disabled”

True or 1: Entry “Simulation <device>, which usually is available in
the Online menu, if the currently connected device is a PLC, will be
not available
False: The menu entry is visible (Default, if section “target settings”
is not available in the device description)

ts:setting
“ update-only-device-
version “

type: boolean; True or 1: Update of the device update is only
possible with different versions of exactly this device. False: Also
updating to a different device is possible (e.g. changing from
EtherCAT to CAN)

ts:setting
“updateAllToEqualVer
sion “

type: boolean; True or 1: The device gets updated recursively. All
devices below the plc get updated to the same version as the plc.
For each device a message gets added, whether the update was
successful or not.

Ts:setting
“Motorola-bitfields”

Type: boolean; TRUE or 1: Bytes in all bitfields of this device are
organized according Motorola byte order

ts:setting
“Union-root-editable”

Type: boolean; TRUE or 1: Also the root element of union
elements, which are defined as IO channels in the IO mapping
dialog of the device editor, can be mapped (default);
if FALSE, only the subelements are mappable

ts:setting
“enableAdditionalPara
meters“

Type: boolean; TRUE or 1: extended online config mode: If already
an application is on the PLC, the user gets a dialog, where he can
choose between connecting to the PLC via “Parameter mode” and
via “Application mode”.
Parameter mode: The project structure on the PLC will be
compared with that in the project, and if there is no mismatch, a
connection to the PLC will be established. In the generic parameter
editor dialog the parameters can be read and written. Applications
keep untouched.
Application mode: The “online configuration mode” will be
established, i.e. an implicit application will be generated on the
device for test purposes. No real application program must be
downloaded.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 133 of 133
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description

FALSE or 0: No “Parameter mode” available (like if you choose
“online config mode” when there is no application on the PLC)

ts:setting
“skipAdditionalParame
tersForEmptyConnect
ors“

Type: Boolean; True or 1: for connectors with no parameters there
will be no additional parameters if setting
“enableAdditionalParameters” is set. This will reduce the amount of
download parameters and therefore the size of the plc boot project.

Fals or 0: Behaviour as with old versions. For all connectors the
additional parameters are created.

ts:setting
"Multiple-mappable-
allowed”

type: boolean; TRUE or 1: It is allowed to map a subelements of a
bitfields type even when the basic element is mapped (multiple
mapping). However a warning will appear while compiling.
Default: 0

 Example:
<ts:setting name="Multiple-mappable-allowed" type="boolean"
access="edit">
 <ts:value>1</ts:value>
</ts:setting>

ts:setting
“createBitChannels”

type: boolean; TRUE or 1: All integer datatypes in the device
configuration description (example "std:DINT") will be created with
bit channels below the standard data type. Can be used in device
descriptions of bus systems which are not supporting bit channels.

Note: If used in the device configuration description of the PLC, all devices
below will be affected.

Note: The setting works only if bit channels are also supported by the IO driver,
in IoDrvReadInputs resp. IoDrvWriteOutputs. Otherwise wrong channels
or none might be updated !

Default: 0

 Example:
<ts:section name="deviceconfiguration">
 <ts:setting name="createBitChannels" type="boolean"
access="visible">
 <ts:value>1</ts:value>
 </ts:setting>
</ts:section>

ts:setting

“ShowMultipleTaskMa
ppingsAsError"

Type: Boolean; True

The compiler will show an error if same inputs or outputs are used
in more then one task. Example if %QB0 is used in task 1 and 2
then the error message is shown when generating code.

False: No error is show as with older versions.

Default: false

ts:setting

“Basetype-mappable“

Type: Boolean, true or 1 (default) In the io mapping all types
(unions, structs) are mappable.

False or 0: The io variables without an iec base type (for example
root of structs) are not mappable in the io mapping editor. A
message is shown if the user tries to set the io mapping.

ts:setting

“Bitfield-mappable“

Type: Boolean, true or 1 (default) In the io mapping the base and
all bits of a bitfield type could be mapped.

False or 0: The base element of a bitfield is not mappable. Only the
underlying bits could be mapped. A message is shown if the user

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 134 of 134
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description
tries to set the io mapping.

ts:setting

“MapAlwaysIecAddres
s“

Type: Boolean, true or 1:

IoDrvReadInputs and IoDrvWriteOutputs are always copying to
input %I or output %Q space. The mapping to the existing
variables is done in functions afterreadinputs or beforewriteoutputs.

SysMem library must be included in the library manager because if
a structured parameter is mapped SysMemCpy is used to transfer
the data from % to the existing variable.

It the setting is enabled IO drives could optimize the coping of data
in IoDrvReadInputs and IoDrvWriteOutputs by copying the
complete data with one SysMemCpy because the IO-driver must
not handle each mapping entry separately.

False or 0 (default):

Standard behavior as in old versions.

ts:setting
“disableChildApp“

For Safety child mapping application

Type: Boolean, true or 1: No child mapping application is created

False or 0 (default): Child mapping application is created for safety
plc device to copy all data from physical devices to logical devices.

ts:setting

“NoIoInstance“

Type: Boolean, true or 1. Function block instances are hidden for
the input assistant (attribute ‘hide’) is set to all instances for
devices.

False or 0 (default): Function block instances are shown for input
assistent.

6.4.5.1.8 Library management
In sub-section “library-management” of <ts:TargetSettings…> the settings for the handling of libraries
are defined.

Example:

<ts:section name="library-management">
 <ts:section name=”placeholder-libraries”>
 <ts:setting name=”IoStandard” type=”string” access=”visible”>
 <ts:value>IoStandard, 3.1.1.0 (System)</ts:value>
 </ts:setting>
 </ts:section>
</ts:section>

6.4.5.1.8.1 Placeholder Libraries
In this sub-section of “library-management” the replacement of libraries is set. The name sets the
library name to replace and the value defines the replacement name.

Example: in a library a placeholder library is used. The name in the library is IoStandard. In the target
settings the IoStandard is replaces by IoStandard, 3.1.10 (System). In the library manager this
replaced library is automatically included.

Example:

<ts:section name="placeholder-libraries">
 <ts:setting name=”IoStandard” type=”string” access=”visible”>
 <ts:value>IoStandard, 3.1.1.0 (System)</ts:value>
 </ts:setting>
</ts:section>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 135 of 135
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

6.4.5.1.8.2 Placeholderlib, for replacing 3S-libraries by customer-specific libraries
Instead of the name of a default 3S-library to be automatically included with the device, a library
placeholder can be specified in the Driver Info section (see chap. 6.4.4.4). When the device is added to
the project, the currently corresponding customer specific library will be included.

6.4.5.1.8.3 Exclude library category
Example:

<ts:section name="library-manager-filter">
 <ts:section name=”filter-entry”>
 <ts:setting name=”hide-category” type=”string” access=”visible”>
 <ts:value>2A47D467-E781-4f73-A35C-01B9D33D28D2</ts:value>
 </ts:setting>
 <ts:setting name=”show-category” type=”string” access=”visible”>
 <ts:value>C179664B-4223-4f78-B898-054073C60FB3</ts:value>
 </ts:setting>
 <ts:setting name=”show-library” type=”string” access=”visible”>
 <ts:value>CAA CanMiniDriver SJA1000 (PLCWinRTE VV3), 3.0.0.2 (3S – Smart Software
Solutions GmbH)</ts:value>
 </ts:setting>
 </ts:section>
</ts:section>

The example excludes the category “PLCWinRTE VV3” with the GUID 2A47D467-E781-4f73-A35C-
01B9D33D28D2 (defined in the file LibraryCategoryBase.libcat.xml).

It will show the complete category CAA with the GUID C179664B-4223-4f78-B898-054073C60FB3

Also with show-library only specific libraries could be shown. The values have to be set in the same
way as for placeholder libraries. It is a string of the name, version and vendor name.

XML Tag Description

ts:setting
“hide-category”

The guid of the library category to disable in the library manager. It
is possible to disable several categories by adding multiple “filter-
entry” sections.

Ts:setting
”show-library”

The name of the library containing the library name, the version
and the vendor. A wildcard for the version is also possible (*)

ts:setting
”show-category”

With this setting it is possible to show a complete sub category in
the disabled parent category.

6.4.5.1.9 Visualization
Subsection “visualization” of <ts:TargetSettings…> is available for device-specific visualization
settings.

Example:

<ts:section name="visualization">
 <ts:section name=”targetsupport”>
 <ts:setting name=”webvisualization” type=”boolean” access=”visible”>
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name=”webvisualization_client” type=”boolean” access=”visible”>
 <ts:value>0</ts:value>
 </ts:setting>
 <ts:setting name=”integratedwebserver” type=”” boolean”=”” access=”visible”>
 <ts:value>1</ts:value>
 </ts:setting>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 136 of 136
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <ts:setting name=”webvisualization_insertbydefault” type =”boolean”
access=”visible”>
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name=”targetvisualization_insertbydefault” type=”boolean”
access=”visible”>
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name=”transferfilestoplc” type=”boolean” access=”visible”>
 <!–If this value is set to true, then the visualization files get re-process to
the plc !>
 <ts:value>1</ts:value>
 </ts:setting>
 </ts:section>
 <ts:section name="keyboardusage">
 <ts:setting name="availablemodifiers" type="string" access="visible">
 <ts:value>SHIFT,CTRL,ALT</ts:value>
 </ts:setting>
 <ts:setting name="basekeys" type="string" access="visible">
 <ts:value>default</ts:value>
 </ts:setting>
 <ts:section name="additionalkeys">
 <ts:setting name="EMERGENCY_STOP" type="integer" access="visible">
 <ts:value>300</ts:value>
 </ts:setting>
 <ts:setting name="MACHINE_SHUTDOWN" type="integer" access="visible">
 <ts:value>301</ts:value>
 </ts:setting>
 </ts:section>
 <ts:section name="notavailablekeys">
 <ts:setting name="BACKSPACE" type="string" access="visible">
 <ts:value/>
 </ts:setting>
 </ts:section>
 </ts:section>

 <ts:section name="TargetConstraints">
 <ts:section name="TargetFonts">
 <ts:section name="Arial CE">
 <ts:setting name="WindowsMatchingFont" type="string"
 access="visible">
 <ts:value>Arial</ts:value>
 </ts:setting>
 <ts:setting name="Si”es" type="string" access="visible">
 <ts:value>10,12,14</ts:value>
 </ts:setting>
 <ts:setting name="Styles" type="string" access="visible">
 <ts:value>default,bold</ts:value>
 </ts:setting>
 </ts:section>
 </ts:section>
 <ts:section name="TargetColors">
 <ts:setting name="Black" type="uint" access="visible">
 <ts:value>0xff000000</ts:value>
 </ts:setting>
 <ts:setting name="White" type="uint" access="visible">
 <ts:value>0xffffffff</ts:value>
 </ts:setting>
 <ts:setting name="Green" type="uint" access="visible">
 <ts:value>0xff00ff00</ts:value>
 </ts:setting>
 <ts:setting name="Red" type="uint" access="visible">
 <ts:value>0xffff0000</ts:value>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 137 of 137
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 </ts:setting>
 <ts:setting name="Blue" type="uint" access="visible">
 <ts:value>0xff0000ff</ts:value>
 </ts:setting>
 </ts:section>
 <ts:section name="TargetVisualElements">
 <ts:setting name="NotAvailableEleme”ts" type="string" access="visible">
 <ts:value>Trace|Table</ts:value>
 </ts:setting>
 <ts:setting name="AvailableEleme”ts" type="string" access="visible">
 <ts:value>Rectangle|Button|Frame|Polygon</ts:value>
 </ts:setting>
 </ts:section>
 <ts:setting name="TargetImageFormats" type="string" access="visible">
 <ts:value>*.bmp|*.jpg</ts:value>
 </ts:setting>
 <ts:setting name="MaxNumOfVisualizations" type="integer" access="visible">
 <ts:value>500</ts:value>
 </ts:setting>
 <ts:setting name="MaxNumOfElementsPerVisualizat”on" type="integer"
access="visible">
 <ts:value>200</ts:value>
 </ts:setting>
 </ts:section>
</ts:section>

Section “targetsupport”, subsection of “visualization”:

The following settings define the file transfer mode:
XML Tag Description

ts:setting
"webvisualization"

1=Web-Visualization is supported
(type: bool)

ts:setting
”integratedwebserver"

1=Web Server integrated in runtime system is available
(type: bool)

ts:setting
”webvisualization_insertbydefault”

1=A “WebVisualization” object is automatically inserted
in the project tree below the Visualization Manager
object
(type: bool)

ts:setting
”targetvisualization_insertbydefault”

1=A “TargetVisualization” object is automatically
inserted in the project tree below the Visualization
Manager object
(type: bool)

ts:setting
”transferfilestoplc”

1=The visualization files get transferred to the PLC
(type: bool)

ts:setting
”webvisualization_client”

1=The runtime requires the Web-Visualization (client),
that doesn't need a visualization in the PLC (the Web-
Visualization is completely calculated in the Web-
Visualization applet). If this value is set to false, then
the Web-Visualization is only interpreting paint
command from the visualization running on the PLC.

ts:setting
”supportlocalvisualizationfiles””

1=’File Transfer settings can be made in the
Visualization Manager dialog in the programming
system; Note: activated for CODESYS Control Win V3
and CODESYS Control RTE V3 !

0=No File Transfer, settings available; default

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 138 of 138
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Section ”keyboardusage“, subsection of “visualization”:

Defines which keys and key modifiers are supported for the hotkey configuration in
visualizations in CODESYS (if not available, see below “Standard Keys”).

XML Tag Description

ts:setting
"availablemodifiers"

Defines exactly those key modifiers that are available on the device.
The value must be a comma separated list of the generally available
modifiers; possible values: "SHIFT“, "CTRL" and “ALT". If this
restricting setting is not available, all modifiers will be treated as if they
were available.
(type: string)

ts:setting
"basekeys"

Allows the usage of a predefined set of keys. If no basekeys setting is
given, all available keys must be defined in the section "additionalkeys".
Possible values: “default”: the keys defined in table “Standard Keys”
(see below) are available
(type: string)

Section “additionalkeys”, sub-section of “keyboardusage”

Contains definitions of keys that are available for the keyboard usage in addition to the
optional set of "basekeys"

XML Tag Description

ts:setting
"key name"

Defines a newly available key; the name must be a valid
canonical desired key name. Value = key code;
Example: ts:setting “EMERGENCY_STOP”; value: “300”

(type: int)

Section „notavailablekeys”, subsection of “keyboardusage”

Allows to remove some of the keys that are previously defined (probably using the
"basekeys") because they are not available on the current platform.

XML Tag Description

ts:setting
"<name of key> "

Removes a key that was previously defined. The value of
such a key is the canonical name of a previously defined
key. Example: ts:setting <BACKSPACE>
Removing keys, that are not defined, results in a “no-
operation". In fact, it does nothing at all. The value of this
setting is ignored at the moment.
(type: string)

If the device description contains no setting concerning key codes, this means that the
following keys are supported by default:

Standard Keys:

Canonical Name Key Code Description

‚A’ b‚s ‚Z’ 0x41-0x5A letter keys

0 to 9 0x30-0x39 number keys

NUM0 to NUM9 0x60-0x69 number keys in number pad

F1 to F1 0x70-0x7B function keys

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 139 of 139
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Canonical Name Key Code Description

BACKSPACE 0x08

TAB 0x09

RETURN 0x0D

PAUSE 0x13

SPACE 0x20

END 0x23

HOME 0x24

LEFT 0x25

UP 0x26

RIGHT 0x27

DOWN 0x28

PRINT 0x2A

INSERT 0x2D

DELETE 0x2E

MULTIPLY 0x6A *

ADDITION 0x6B +

SUBTRACT 0x6D -

COMMA 0x6E ,

DIVIDE 0x6F /

An optional localization of the key names can be defined in a string table for namespace
„keyboardusage“. See chap. 6.4.2 on localization strings.

See in the following a localization example for the keys EMERGENCY_STOP and
MACHINE_STOPDOWN, which are assumed to be defined in the „additionalkeys” section
(see above):

 <Strings namespace="keyboardusage">
 <Language lang="de">”
 <String identifier="EMERGENCY_STOP">
 NOT AUS
 </String>
 <String identifier="MACHINE_SHUTDOWN">
 Maschine ausschalten
 </String>
 </Language>
 <Language lang="fr">“
 <String identifier="EMERGENCY_STOP">
 Arrêt d’urgence
 </String>
 <String identifier="MACHINE_SHUTDOWN">
 Eteindre la machine
 </String>
 </Language>
 <Language lang="en">”

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 140 of 140
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <String identifier="EMERGENCY_STOP">
 Emergency Stop)
 </String>
 <String identifier="MACHINE_SHUTDOWN">
 Shut down machine
 </String>
 </Language>
</Strings>

Section “TargetConstraints”, subsection of “visualization”:

The settings within this section define restrictions valid for all visualizations inserted in the
device tree below the device. There are no restrictions for any visualizations in the POUs tree!
If visualizations from the POUs tree, which are not matching the restrictions given by the
device, are used, compile errors will be issued.

XML Tag Description

ts:setting
”TargetImageFormats”

“|”-separated list of supported image formats;
Example: <ts:value>*.bmp|*.jpg</ts:value>
(type: string)

ts:setting
”MaxNumOfVisualizations”

maximum number of visualizations which can be
inserted below the device (type: int)

ts:setting
”MaxNumOfElementsPerVisualization”

maximum number of visualization elements within a
visualization
(type: int)

ts:setting
"SupportGradientFill”

If this setting is available,“gradient fill” for colors will
be supported by the device (note: currently available
for Windows, Linux, not however WinCE). If the
setting is missing, compile error messages will
appear with visualization projects containing gradient
fill definitions.
Example:
<ts:setting name="SupportGradientFill" type="boolean"
access="visible">
 <ts:value>1</ts:value>
</ts:setting>

Section “TargetFonts”, subsection of section “TargetConstraints”

Section “<fontname>”, subsection of section “ TargetFonts ”

fontname: e.g. „Arial_ CE“;

Only the fonts defined here will be available in the configuration dialogs of a
visualization element. This restriction might be reasonable if projects are
created for usage in a Target-Visualization.

If this section is not available, the default font selection will be available.

If no font styles are specified, the style options in the font dialog will be
disabled.

XML Tag Description

ts:setting
”WindowsMatchingFont”

optional: if available, this windows matching font
will be used for the display within the editor view;
Example: <ts:value>Arial</ts:value>
(type: string)

ts:setting
” Sizes”

comma-separated list of possible font sizes;
e.g.<ts:value>10,12,14</ts:value>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 141 of 141
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description
(type: string)

ts:setting
” Styles”

comma-separated list of available font styles;
possible values: default, bold, bold_cursive)
Example: <ts:value>default,bold</ts:value>
(type: string)

Section “TargetColors”, subsection of section “TargetConstraints”

These settings restrict the color selection within the configuration dialogs of a
visualization element. This might be reasonable if projects are created for usage in a
Target-Visualization. For each color an own setting must be entered. If no color
restrictions are defined, the default color selection dialog will be provided.

XML Tag Description

ts:setting
”<color>”

color=”Black”, “Green” etc.;
the value must specify the color id (type: uint);

Example:
<ts:setting name="Black" example: type="uint" access="visible">
<ts:value>0xff000000</ts:value>
</ts:setting>

Section “TargetVisualElements”, subsection of section “TargetConstraints”

These settings define which visualization elements are available in the visualization
editor toolbox. Either you specify a “|”-separated list of „AvailableElements“ or a list of
„NotAvailableElements“.
If no list is specified, all elements will be supported.

XML Tag Description

ts:setting
“AvailableElements”

resp.

ts:setting
„NotAvailableElements”

“|”-separated list of elements which should be available
resp. not available; possible values: element names as
used in the visualization editor element toolbox;
Example: <ts:value>Rectangle|Circle</ts:value>
(type: string)

6.4.5.1.10 Online Manager
Subsection “onlinemanager” of <ts:TargetSettings…>

Example:

<ts:section name="onlinemanager">
 <ts:setting name="communication-buffer-size" type="integer" access="edit">
 <!-- Communication buffer size. Is used to create an offline boot project (no
compact download!), where this is the size of the largest service. -->
 <ts:value>100000</ts:value>
 </ts:setting>
</ts:section>

XML Tag Description

ts:setting
"communication-buffer-size"

type: integer (bytes)

The setting defines the size for the layer 7 communication
buffer. This is important for the handling of boot projects on
small devices.

For device description versions < V3.5.0.0: If the setting is
not available, CODESYS will create only one layer 7 service

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 142 of 142
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description
for every download regardless of the size of the boot project;
so large boot projects possibly cannot be loaded to the
target.

For device description versions >= V3.5.0.0: Default is
65536 (0x10000) which should work for most runtimes.

If the setting is missing, an error will be reported when trying
to create an offline boot application.

6.4.5.1.11 Recipe manager
In sub-section “RecipeManager” of <ts:TargetSettings…> device-specific settings as well as the default
values for the Recipe Manager dialog can be defined.

Example:

<ts:section name="RecipeManager">
 <ts:setting name="StorageType" type="integer" access="visible">
 –-- This value sets the default storage type -->
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="FileExtension" type="string" access="visible">
 –-- This value sets the default file extension -->
 <ts:value>.txtrecipe</ts:value>
 </ts:setting>
 <ts:setting name="FilePath" type="string" access="visible">
 –-- This value sets the default file path -->
 <ts:value></ts:value>
 </ts:setting>
 <ts:setting name="TokenSeparator" type="string" access="visible">
 –-- This value sets the default token separator -->
 <ts:value>:=</ts:value>
 </ts:setting>
 <ts:setting name="SelectedColumns" type="string" access="visible">
 –-- This value sets the default selected columns -->
 <ts:value>0|1|2|3</ts:value>
 </ts:setting>
 <ts:setting name="SaveAsDefault" type="boolean"”"access="visible">
 –-- This value can be used to disable the save as default button -->
 <ts:value>1</ts:value>
 </ts:setting>
 <ts:setting name="AutoSaveRecipes" type="boolean"”"access="visible">
 –-- This value sets the default for the auto save recipes mode -->
 <ts:value>1</ts:value>
 </ts:setting>
</ts:section>

XML Tag Description

ts:setting
"StorageType"

Integer defining the type of storage; possible values:
0=Binary, 1=Textual

ts:setting
"FileExtension"

String defining the default extension of the storage file; e.g.
“.txtrecipe”

ts:setting
"FilePath"

String defining the default storage location; e.g. “D:\rec_stor”

ts:setting
"TokenSeparator"

String defining the default separator in case of storing to a textual
file; possible values: Tab, Semicolon, Comma, Space, :=, |

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 143 of 143
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

XML Tag Description

ts:setting
"SelectedColumns"

String defining the default list of “selected columns”; possible
values: “|”-separated list of the column numbers 0,1,2,3; e.g. if the
available columns are Type, Name, Minimal Value, Maximal Value,
then value “0|1|2|3” will effect that these four columns per default
get entered as “selected columns”

ts:setting
"SaveAsDefault"

Boolean; defines whether the “Save as default” button is enabled
(1) or disabled (0)

ts:setting
"AutoSaveRecipes"

Boolean; defines whether option “Save changes to recipes
automatically” per default is activated (1) or deactivated (0)

6.4.5.1.12 Symbolconfiguration
In sub-section “SymbolConfiguration” of <ts:TargetSettings…> device-specific settings concerning the
memory for the Symbolconfiguration, which is handled as a “sub-application” can be defined.

Example:

<ts:section name="symbolconfiguration">
 <ts:setting name="max-area-size" type="integer" access="visible">
 <ts:value>10000</ts:value>
 </ts:setting>
 <ts:setting name="generate_as_separate_application" type="boolean"”"access="exit">
 <ts:value>0</ts:value>
 </ts:setting>
</ts:section>

XML Tag Description

ts:setting
"max-area-size"

Integer defining the maximum size [bytes] of the
memory area for the symbolconfiguration

ts:setting
"generate_as_separate_application"

Boolean:
0 = Symbolconfiguratuion is generated in father
application
1 = :Symbolconfiguratuion is generated as a
separate child application [Default]

6.4.5.1.13 Trace
IEC-Trace:

In sub-section “Trace” of <ts:TargetSettings…> device-specific settings concerning the memory for the
Trace Configuration, which is handled as a “sub-application” can be defined.

Note: This setting affect only the internal IEC-Trace!

XML Tag Description

ts:setting
"max-area-size"

Integer defining the maximum size [bytes] of the memory area for
the trace configuration

Example:

<ts:section name="trace">
 <ts:setting name="max-area-size" type="integer" access="visible">
 <ts:value>10000</ts:value>
 </ts:setting>
</ts:section>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 144 of 144
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

TraceManager:

With V3.4.2.0 the new TraceManager is available. For this new feature, the new CmpTraceMgr
component in the runtime system is necessary. To enable this TraceManager in CODESYS, the
following setting is necessary:

XML Tag Description

ts:setting
"tracemanager"

Bool value to enable (=true/1) the trace manager

Example:

<ts:section name="trace">
 <ts:setting name="tracemanager" type="boolean"access="visible">
 <!-- With this option, the new tracemanager is activated in CODESYS.
 With this option, the CmpTraceMgr component is needed in the runtime system! -->
 <ts:value>1</ts:value>
 </ts:setting>
</ts:section>

6.4.5.1.14 Object Type Restrictions
You can add a sub-section “object-type-restrictions” of <ts:TargetSettings…> where you explicitly
define the types of objects which should be available when creating the application in the programming
system.(if the section is missing, there will be no restriction on the availability of object types):

XML Tag Description

ts:setting
"type-guid"

String, specifying the type GUID of the object type

ts:setting
"interface"

String, specifiyint the assembly-qualified name of the interface

There can be arbitrarily many "type-guid" and "interface" settings. If the section is present, only objects
which match at least one of the criteria can be added to any subobject of the device. If the criteria is
not matched, the object cannot be created, pasted, imported, dropped, etc.

Note: If an "Update Device" operation is performed, object types that are becoming unsupported will
not be deleted. Instead, a corresponding warning message will be displayed in the Message View.

Example: The following target section restricts the possible set of object types to POUs and actions:

<ts:section name="object-type-restrictions">
 <ts:setting name="type-guid" type="string" access="visible">
 <ts:value>{6F9DAC99-8DE1-4efc-8465-68AC443B7D08}</ts:value>
 </ts:setting>
 <ts:setting name="interface" type="string" access="visible">
 <ts:value>_3S.CoDeSys.ActionObject.IActionObject,ActionObject</ts:value>
 </ts:setting>
</ts:section>

6.4.6 Custom tags
Custom tags can be found in many places within the description file. They can be used to store
customer-specific information. They are not transferred to the target system, although they can be
evaluated via in the programming system via PlugIns. A custom tag may have any number of sub-
nodes. In order to keep the description file validatable, all nodes used should be defined in a scheme,
and this scheme should be referenced.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 145 of 145
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

6.4.7 Strings
The description files offer a mechanism for localized text display. The texts can be created in the form
of tables and referenced via an identifier. Each table is identified via a unique namespace. The tables
are separated by different namespaces in order to prevent overlaps of identifiers in different tables.
Texts can be stored in each table in all supported languages. The Strings section is currently the only
table defined in the description file. Further tables (e.g. import of general texts) will be supported in the
future.

Within the description file texts are referenced via nodes of type StringRef. The node reference has the
form “<namespace>:<identifier>”. The content of a StringRef node is used as default value if no entry
is available in a suitable language and should therefore be written in English.

Each language node contains all texts for a language. The language identifier has the form <language
code>-<country code> (“en-us”, “de-au”, ...). The default language is English (“en-en”). Under this node
there is a String node for each stored text. The name attribute matches the text identifier and must not
contain a colon.

6.4.8 Types
The type system of the description files is based on the
IEC type system. However, not all IEC types are
currently available. A number of IEC types are made
available as standard data types. More complex types
such as structures (StructType), enumerations
(EnumType), range types (RangeType) and bit fields
(BitfieldType) can be defined in this section.

Types are always referenced via a namespace and the
type name as follows: “<namespace>:<name>”. All
basic types are located in the “std” namespace. The
following basic types are available:
std:BOOL5 Truth value (TRUE or FALSE) std:REAL Floating-point numbers, 32 bits

std:BYTE 8 bits, logic std:LREAL Floating-point numbers, 64 bits

std:SINT 8 bits, numeric std:STRING Character string, 80 characters max.

std:USINT 8 bits, numeric, unsigned std:BIT Single bit (for inputs/outputs).

std:WORD 16 bits, logic

std:INT 16 bits, numeric

std:UINT 16 bits, numeric, unsigned

… …

std:ULINT 64 bits, numeric, unsigned

The Types node has an attribute:

• namespace: This name defines the namespace for all types that were defined under this node.
Structures represent a composition of several elements, as is common practice in programming
languages. These elements may be based on standard types, or further types may have been defined.
Recursion of structures (directly or indirect) is not permitted.

The StructType has a name attribute. This name is used for referencing the type. Within the type any
number of Component nodes can be defined, which define the individual elements of the structure.
Each component has two attributes:

5 Important: BOOL is internally mapped to a full byte and has the size 8 bits. This type is unsuitable

for input/output channels representing an individual bit. In this case the data type std:BIT should be
used.

Figure 9: The “Types” node

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 146 of 146
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Identifier: Corresponds to the variable
names of the structure member in IEC. It is
used in CODESYS for accessing this
structure member.

The nodes under a component describe
this in more detail:

• Default contains the DefaultValue
for this structure component.
Depending on the type of the
component the content is made up
as follows (as at any point where a
ValueType is expected)

1. Simple type (int, string, bool,
...): The associated value as
string.

2. Enum: The identifier of the
value used.

3. Complex (composite) type, for example a further structure:
For each subvalue to be set an element node containing the value of the element
(complex if required).

• VisibleName contains the component name to be displayed at the interface (a more user-
friendly representation of the identifier). For the VisibleName any characters are permitted
(including spaces and special characters). The content can be localized (StringRef).

• Unit: an optional unit designation for the value used. This value can be localized.

• Description of the node (can be localized).

• Custom enables customer-specific content to be stored that is not interpreted by the system
(see CustomType section). A PlugIn can access these data during runtime. There is no
transfer to the target system.

6.5 Device administration
The descriptions of all devices to be used in CODESYS V3 must be installed with CODESYS. The
description files are stored in an internal “database” referred to as Device Repository. The repository
can handle different versions of a device description at the same time. To this end it is necessary to
use versioning for description files, i.e. a version number is incremented internally if the description
changes. Installation of a modified description file with the same version number will overwrite an
existing version.

The repository expects the device description in the form of an XML file. These are described in the
following chapter. Import filters are made available for alternative description files (e.g. fieldbus-
specific: EDS, GSD, ...). The description files are converted to the standard description (as far as
possible and meaningful). For specialized editors (e.g. a Profibus configurator) the original file is
generally also stored in the repository so that it can be accessed. Both files are copied into the
repository, i.e. changes in the original file have no effect until it is reimport–d - here too it is important to
increment the version number.

To access a device description it must be referenced uniquely. A combination of three values is used
for this purpose:

• Type (16 bit unsigned): Device type
The possible types are defined by 3S. The type also determines the format of the next two
values. A list of defined types can be found in the Appendix.
Ids from 0x8000 can be used for manufacturer-specific modules that use internal or non-
standardized busses.
Examples:

o 0x20: Profibus master

Figure 10: Structure definition

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 147 of 147
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

o 0x21: Profibus slave (imported from GSD file)

o 0x1000: CODESYS-programmable device (described as XML file).

• Id (string): Uniquely identifies the device description within a type.
Device descriptions with different types can use the same Id. The definition of the Id as a string
offers a certain degree of flexibility regarding the format required for importing alternative
description files. For all types >= 0x1000 the format is defined as follows:

####<space>####

with “#” representing exactly one hexadecimal digit. The first four digits form a manufacturer Id
that is allocated by 3S. It is the same Id that is also used in the runtime system, for example.
The second group of four digits can be assigned freely by the manufacturer (it should be
different for each device).
Example: manufacturer ID is 0x1f3, internal device Id is 0x23, in which case the device Id
would be “01F3 0023”

• Version (string): Indicates the version of a device description.
Here too the string enables a variable format for importing alternative description formats. For
all types >= 0x1000 the format is specified as follows:

n.n.n.n

with “n” representing any decimal number, e.g. “1.0.17.3“.

Within a device description it is possible to describe further modules that are only used in the context
of this device description. In principle they are described and used in the same way as a device,
although they can only be used as a child of the main device or another module defined in the main
device. Modules are identified through the device identification together with an additional module Id.

• Module Id (string): Identifies a module within a device description.
The format is not free.

6.6 Save and Restore Changed IO Configuration Parameters
With the following setting for the CmpIoMgr component in the configuration file of the runtime, you can
activate to store all changed parameter values in the file "IoConfig.”ar":

[CmpIoMgr]

StoreChangedParameters=1

This file is written always if a parameter has been changed online or via IoMgrWriteParameter().
All changed parameters are restored at the next bootup, right after the bootproject with the IO-
Configuration is loaded.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 148 of 148
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

7 I/O Drivers

An I/O driver is a component that operates and supports a specific hardware or device. Such an I/O
driver typically has to perform the following functions:

• Physical access to the device

• Detection and initialization of the device

• Data access to and data exchange with the device

• Support of diagnostic information of the device

• Optional functions like scanning sub devices, parameter access, etc.

7.1 Concept
In CODESYS V3, an I/O driver can be implemented in ANSI-C/C++ and also in IEC! This sounds
strange, because in IEC you typically have no access to the hardware. But in CODESYS V3, the
hardware access can be realized by so called System-Libraries. These libraries offer the possibility to
access for example a PCI bus (SysPCI.library), physical memory (SysShm.library) or device ports
(SysPort.library).

An I/O driver will always be called by the runtime system in the appropriate moments. These moments
are for example:

• At download of an application to read in I/O-configuration (see previous chapter)

• At the beginning of a task to read in input channels

• At the end of a task to write out output channels

• At sending an online service to read or write an I/O driver parameter

To enable this, the I/O driver has to implement one mandatory interface (IBase) and can implement
some optional interfaces (dependent of the supported features). These interfaces are declared in the
next chapter. The interface functions are typically called by the so called I/O-manager. This component
manages all I/O-drivers independent of their implementation. An I/O driver in IEC will be represented
by a wrapper implemented in C/C++ against the I/O-manager, so from this point of view every I/O
driver looks the same.

Each physical I/O device is typically supported by one instance of an I/O driver.

In the case of a C/C++-driver, the driver first has to (auto) detect its supported cards at startup of the
runtime system and has to create one instance for each detected device.

In the case of an IEC-driver, the driver is automatically instantiated by CODESYS, if a device is
appended in the graphical PLC-configuration. An auto detection of the device must be done at
download time of the application and the physical device must be assigned to each instance of the
driver afterwards.

The instantiation and assignment of a physical device to an I/O driver instance is described in chapter
7.5 in detail.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 149 of 149
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Figure 11: Architecture calling I/O-drivers

To simplify start writing an I/O-driver, we provide a toolkit with the source code frames of I/O-drivers
and some description files (XML). We provide an I/O driver frame in C and in IEC. You can find the
source code and the description files typically under $\Components\IoDriver\IoDrvTemplate.

In the CODESYS V3 I/O-concept, there are 4 different layers of functionality that the I/O-concept based
on (see figure below).

Figure 12: I/O model in CODESYS V3

In the figure above, you can see the four layers at the left side. The base level is the hardware- and
operating system abstraction layer. This layer provides a standard interface for every hardware access
(e.g. Shared-Memory, PCI, Interrupt-Handling, etc.).

Device 1

Device 2

I/O driver 1
Instance
IEC

I/O driver 2
Instance
C/C++

I/O driver 1
Wrapper

I/O-Manager

I/O
configuration
IEC

1. Hardware and Operating-
System Abstraction Layer

System Interface

2. I/O Block Layer

3. I/O Driver Layer

4. Application Layer

Drives, Fieldbusses

Profibus
Driver

CAN
Low Level
Driver

CAN
Driver

CAN Open
Stack

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 150 of 150
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

7.2 Main I/O Driver Interfaces
To understand how an I/O driver works internally, we need to take a look at the interfaces that an I/O
driver has to implement.

If the driver is written in C/C++ you can find the available interfaces in the directory components. The
interface header files always begin with CmpIpDrv and ends (like every interface) with Itf.h:

CmpIoDrv…Itf.h

If you intend to write an I/O driver in IEC, you can find the interface in the corresponding libraries with
the following structure:

IIoDrv... .library

7.2.1 IBase
The IBase interface is the mandatory interface that every I/O driver has to implement! It Contains the
following functions:

IBase (C/C++, the Parameter pIBase is only needed for C-drivers):

1. void *QueryInterface (IBase *pIBase, ITFID ItfId, RTS_RESULT *pResult)

2. int AddRef(IBase *pIBase)

3. int Release(IBase *pIBase)

IBase (IEC):

1. POintER TO BYTE QueryInterface (ITFID ItfId, POintER TO UDint *pResult)

2. Dint AddRef()

3. Dint Release()

With the QueryInterface() function, an I/O driver can be requested for an interface, that the I/O driver
implements. The corresponding interface pointer is returned by this function.

An interface is always specified and can be requested by an ID. To save memory, the ID is only a 32-
Bit number and no GUID. But this causes to manage all interface IDs. The ID consists of the high word
vendor Id and the low word interface Id. So every vendor can create its own interfaces.
A list of all available interface IDs that are used in the runtime system can be found in the header file
CmpItf.h or for IEC-driver in the corresponding interface libraries.

The AddRef() function is always called implicitly, if a QueryInterface call was successful to increase a
reference counter of this object.

The Release() can be called to release an interface pointer, that was provided by QueryInterface. This
function decrements the reference counter of an object.

If the reference counter is 0, the object will be deleted.

7.2.2 ICmpIoDrv
The most important interface, that an I/O driver can implement, is the ICmpIoDrv interface. It contains
the following functions for different issues:

Identification functions:

typedef struct tagIoDrvInfo
{
 RTS_IEC_WORD wId; // Index of the instance
 RTS_IEC_WORD wModuleType; // Supported module type
 RTS_IEC_DWORD hSpecific; // Specific handle
 RTS_IEC_string szDriverName[32]; // driver name
 RTS_IEC_string szVendorName[32]; // vendor name
 RTS_IEC_string szDeviceName[32]; // device name
 RTS_IEC_string szFirmwareVersion[64]; // Firmware version
 RTS_IEC_DWORD dwVersion; // Version of the driver

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 151 of 151
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

} IoDrvInfo;

RTS_RESULT IoDrvGetInfo(IoDrvInfo **ppIoDrv):

With this function, some generic information can be requested like driver name (see structure
above), device name that is supported by the driver, vendor name and firmware number (if the
supported device has an own firmware on it like the hilscher cards).

RTS_RESULT IoDrvIdentify(IoConfigConnector *pConnector):

By calling this function, the I/O driver should identify itfs device, like blinking some LEDs,
stopping the bus, etc. It is planned to call this function by a menu action on the device in the plc-
configuration to physically identify this device. This could be very useful, if there are several
identical cards plugged in the plc and the assignment in the plc-configuration in CODESYS is
unclear.

Configuration: (called during application download)

RTS_RESULT IoDrvUpdateConfiguration(IoConfigConnector *pConnectorList, int nCount):

This function is called at download of the application that contains the I/O-configuration. Each
driver instance gets the complete list of connectors!

The first thing that must be done in this function is to detect the connector that is supported by
the I/O-driver. For this, the I/O driver can request the Io-manager for the first connector with
the specified type Id, like:

pConnector = CAL_IoMgrConfigGetFirstConnector(pConnectorList, &nCount, 0x0020);

Here, the first connector with the Id 0x0020 (=CT_PROFIBUS_MASTER) is searched. See
chapter 6.3.1 for detailed information.

If the first connector with the matching type is found (pConnector is unequal 0), it must be
checked:

• if it is the correct supported device

• if the connector is not supported already by a previous instance

To check, if is the correct device, typically some additional parameters are used to detect this
like vendor name, device name or specific device id.

To check if the connector is free and can be used and it is not occupied by another instance,
therefore the connector entry hIoDrv must be checked for 0 or -1. In both cases, the I/O-
connector is free and can be used. To occupy the connector, the driver has to write ist handle
into the connector.

So typical sequence of IoDrvUpdateConfiguration looks like in C:
IBase *pIBase;
IoConfigConnector *pConnector = CAL_IoMgrConfigGetFirstConnector(pConnectorList, &nCount,
CT_PROFIBUS_MASTER);

while (pConnector != NULL)
{
 IoDrvInfo *pInfo;
 IoConfigParameter *pParameter;
 char *pszVendorName = NULL;
 char *pszDeviceName = NULL;

 IoDrvGetInfo(hIoDrv, &pInfo);

 pParameter = CAL_IoMgrConfigGetParameter(pConnector, 393218);
 if (pParameter != NULL && pParameter->dwFlags & PVF_POintER)
 pszVendorName = (char *)pParameter->dwValue;
 pParameter = CAL_IoMgrConfigGetParameter(pConnector, 393219);
 if (pParameter != NULL && pParameter->dwFlags & PVF_POintER)
 pszDeviceName = (char *)pParameter->dwValue;

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 152 of 152
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 if (pConnector->hIoDrv == 0 &&
 pszVendorName != NULL && strcmp(pszVendorName, pInfo->szVendorName) == 0 &&
 pszDeviceName != NULL && strcmp(pszDeviceName, pInfo->szDeviceName) == 0)
 {
 pConnector->hIoDrv = (RTS_IEC_DWORD)pIBase;

In IEC you can find the appropriate sequence in the template driver. It looks quite the same.

After detecting the right connector, the next step in the function IoDrvUpdateConfiguration is to
configure the physical device with the connector parameters and optional to detect all slaves (if
is a fieldbus master).

To detect the slaves, the I/O-manager provides some interface functions too:

pChild = CAL_IoMgrConfigGetFirstChild(pConnectorList, &nCount, pConnectorFather);

With this function, the first child of the father connector pConnectorFather was returned.

The next child (slave) can be requested by:

pChild = CAL_IoMgrConfigGetNextChild(pChild, &nCount, pConnectorFather);

ATTENTION: The driver must register its instance at each supported connector (also PCI
connectors, slaves, etc.)! This must be done in the hIoDrv component of the corresponding
connector, like:

pChild->hIoDrv = (RTS_IEC_DWORD)pIBase;

RTS_RESULT IoDrvUpdateMapping(IoConfigTaskMap *pTaskMapList, int nCount):

The driver is called with the so called task map list. A Task map contains the following
information:

Element IEC Data type

Task ID DWORD

Type (Input or Output) WORD

Number of connector maps WORD

Pointer to connector map list POintER

A connector map list contains the following information:

Element IEC Data type

Pointer to a connector DWORD

Number of channel maps WORD

Pointer to channel map list POINTER

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 153 of 153
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

The complete I/O-mapping structure is shown in the following picture:

Figure 13: Mapping structure

These are the missing bricks to understand the I/O-mapping.

The task map contains all mapping information for each task, that means, all I/O-channel that
are use by a task. For each task you got one entry for all inputs and one entry for all outputs.

The task map contains a list of connectors maps, that means on which connectors the I/O-
channels are residing.

And at least, the connector map entry contains a list of channel maps, which includes the real
mapping information, where to copy the inputs to which offset on the device and where to copy
the outputs from the device to which offset in the application.

In the mapping table, the I/O driver can sort or rearrange entries to optimize later cyclic access.
E.g. several byte channels can be collected to one byte stream, to use one memcpy at the cyclic
update.

Cyclic Calls:

RTS_RESULT IoDrvReadInputs(IoConfigConnectorMap *pConnectorMapList, int nCount):

This interface function is called at the beginning of a task to read in all referred input values of
this driver. Only one call is done for each task.

RTS_RESULT IoDrvWriteOutputs(IoConfigConnectorMap *pConnectorMapList, int nCount):

This interface function is called at the end of a task to write out all referred output values of this
driver. Only one call is done for each task.

RTS_RESULT IoDrvStartBusCycle(IoConfigConnector *pConnector):

Connector 1 1

Task 1

3 Connector 2

Parameter 3 3

Task 0

IoConfigTaskMap

…

IoConfigConnectorMap

0

IoConfigConnector

Connector 0

IoConfigParameter

Parameter 0 (I)

Parameter 1 (Q)

Parameter 2 (I)

IoConfigChannelMap

… Connector 3

0

1

2

Parameter 0 (I)

…

…

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 154 of 154
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

This function is used to trigger a bus cycle (if necessary on the device). This can be specified in
the device description as followed, if a bus cycle is necessary (see chapter 6.4.4.4):

<DriverInfo needsBusCycle="true">
 …
</DriverInfo>

In which context this function is called can be specified in the IO-configuration.
On the device dialog in the register card “PLC settings”, you can specify a dedicated “bus cycle
task”. If no task is specified here, the task with the shortest cycle time is used out of the task
configuration. With the attribute “useSlowestTask” you can specify in your device description,
that the slowest task does the bus cycle (see chapter 6.4.4.4).
On the device (e.g. Master), there is a register card “Mapping”, where you can specify an
optional bus cycle task. If no task is specified here, the configuration of the device is used (see
above) as default.

RTS_RESULT IoDrvWatchdogTrigger(IoConfigConnector *pConnector):

This function is called cyclically to retrigger a watchdog on the device. The cycle time must be
calculated in the I/O-driver.

Scanning sub devices/modules:

RTS_RESULT IoDrvScanModules(IoConfigConnector *pConnector, IoConfigConnector
**ppConnectorList, int *pnCount):

This function is called to scan sub devices. This can be used to scan physically available slaves
of fieldbus master, that are connected to one fieldbus.

It is necessary to enable the scan mechanism in the device description file. This is done by an
additional xml element in the <DriverInfo> section.

Example:
<DriverInfo>
 <Scan supported="true" identify="true"></Scan>
</DriverInfo>

The scan function is enabled for the device and the command is enabled in the context menu if
the device is selected in the device tree.

The identify attribute enables the call of IoDrvIdentify to identify a scanned device. In most cases
a LED is blinking to show the user the selected device. It is helpful for bus systems without DIP
switches for address setting like sercos or ProfiNet.

In the method IoDrvScanModules the connected devices have to be returned.

With versions before V3.5 SP2 the method is called only once and therefore all devices must be
scanned at once.

With version from V3.5 SP2 it is possible to return ERR_PENDING. In that case the method
IoDrvScanModules is called again and the method could return just the found number of devices
or 0 if the stack needs additional time or calls to collect the available devices.
The programming and runtime system must support this and it will lower the required memory
for the scan function.

If flag ConnectorOptions.CO_SCAN_PENDING_SUPPORTED is set in pConnector^.wOptions
then it is possible to use the pending functionality.

Descriptions of parameters:

IoConfigConnector *pConnector

It contains the connector for the device (for example master) and the parameters for starting the
scan function.

 IoConfigConnector **ppConnectorList

Inside the method this parameter has to be set to the memory containing a list of connectors for
all devices found. If CO_SCAN_PENDING_SUPPORTED is not available the memory has to be

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 155 of 155
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

allocated dynamically and freed in FB_Exit or before the next scan call.
If CO_SCAN_PENDING_SUPPORTED is available the method could return a pointer to one
instance of IoConfigConnector.

 int *pnCount

The method has to set the number of connectors (=devices + sub devices) stored in the
ppConnectorList.

Devices and sub devices could be returned in the connector list. The sub devices must be
directly copied to the memory behind the devices then the scan mechanism could automatically
assign the sub devices.

Memory content for IoConfigConnector
Device 1
Sub device 1.1
Sub device 1.2
Device 2
Sub device 2.1

Example in IEC working with all versions:

Member variables for function block:
m_pScanConnector: POINTER TO IoConfigConnector; // only necessary to free allocated
 // memory
m_diScannedSlaves: DINT;

Declaration:
METHOD IoDrvScanModules : UDINT
VAR_INPUT
 pConnector : POINTER TO IoConfigConnector;
 ppConnectorList : POINTER TO POINTER TO IoConfigConnector;
 pnCount : POINTER TO DINT;
END_VAR
VAR
 pSlaveConnector: POINTER TO IoConfigConnector;
 pSlaveParameters: POINTER TO IoConfigParameter;
 diCount: DINT;
 dwParamCount : DWORD;
 stComponent : STRING :='Test';
 wSlaves: WORD;
 wLen: WORD;
 bFailed: BOOL;
 dwVendorID: DWORD :=0;
 dwDeviceId: DWORD := 0;
 dwRevision : DWORD := 0;
 udiResult: UINT;
 stModuleID: STRING;
 wConnectorCount: WORD;
 bScanWithPending : BOOL;
END_VAR

Implementation:
IoDrvScanModules_Count := IoDrvScanModules_Count + 1;
// Counter for debugging. Shows that IoDrvScanModules is called
{IF defined (variable:ConnectorOptions)}
 bScanWithPending := pConnector^.wOptions = ConnectorOptions.CO_SCAN_PENDING_SUPPORTED;
 // Check for version V3.5 SP2. If flag is set the return value ERR_PENDING could be
used.
{END_IF}
IF m_pScanConnector <> 0 AND m_diScannedSlaves > 0 THEN
 // free memory from the last scan
 pSlaveConnector := m_pScanConnector;
 FOR diCount := 1 TO m_diScannedSlaves DO
 pSlaveParameters := pSlaveConnector^.pParameterList;
 FOR dwParamCount := 1 TO pSlaveConnector^.dwNumOfParameters DO
 // Free the memory for the parameters
 IF (pSlaveParameters^.dwFlags AND 16#2) = 16#2 THEN
 // dwValue is pointer
 IF pSlaveParameters^.dwValue <> 0 THEN
 SysMemFreeData(stComponent,pSlaveParameters^.dwValue);
 END_IF
 END_IF
 pSlaveParameters := pSlaveParameters + SIZEOF(IoConfigParameter);
 END_FOR
 // Free the parameter list

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 156 of 156
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 SysMemFreeData(stComponent,pSlaveConnector^.pParameterList);
 pSlaveConnector := pSlaveConnector + SIZEOF(IoConfigConnector);
 END_FOR
 // Free the connectors
 SysMemFreeData(stComponent,m_pScanConnector);
 m_pScanConnector := 0; // Mark memory as freed
 m_diScannedSlaves:=0;
 IF bScanWithPending THEN
 // Scan return ERR_PENDING to free the allocated memory
 // now return ERR_OK to finish the scan process
 IoDrvScanModules := Errors.ERR_OK;
 END_IF
END_IF
// to-do: get the number of slaves
wSlaves := 1;
// Example for one device
// Number of Slaves is now known -> allocate memory
pSlaveConnector^ :=
SysMemAllocData(stComponent,wSlaves*SIZEOF(IoConfigConnector),ADR(udiResult));
// For old version allocate the necessary memory for all device.
// With V3.5 SP2 it is possible to return only one device for each call of
IoDrvScanModules
// Therefore it is not necessary to allocate memory dynamically. it could be also a
member variable of the function block
IF ppConnectorList = 0 THEN
 // Not enough memory
 IoDrvScanModules := Errors.ERR_FAILED;
 RETURN;
END_IF
ppConnectorList^ := pSlaveConnector;
// Set the return value of the method to the IoConfigConnector memory.
// Store the memory pointer and size for freeing the memory after scan
m_pScanConnector := pSlaveConnector;
m_diScannedSlaves := wSlaves;
wConnectorCount := 0;
FOR diCount := 1 TO WORD_TO_DINT(wSlaves) DO
 pSlaveParameters := SysMemAllocData(stComponent, 4 *
SIZEOF(IoConfigParameter),ADR(udiResult));
 // At least 4 parameters have to be returned for each connector.
 IF pSlaveParameters <> 0 THEN
 bFailed := FALSE;
 // to-do: get information from device, vendor id, product, revision etc.
 // anything that is needed to find the matching device description in the
 // repository
 IF NOT bFailed THEN
 // device information successfully read
 pSlaveConnector^.wType := 32768; // DeviceID of device as in device
 //Description <DeviceIdentification><Type>
 pSlaveConnector^.dwNumOfParameters := 4; // 4 parameters minimum
 pSlaveConnector^.pParameterList := pSlaveParameters
 // store the parameters vendor id
 pSlaveParameters^.dwParameterId := 1; // Vendor ID is always 1
 pSlaveParameters^.dwValue := dwVendorID;
 pSlaveParameters^.wLen := 32; // Bitlength
 pSlaveParameters^.wType := TypeClass.TYPE_DWORD;
 pSlaveParameters^.dwFlags := 16#34; // Value is a direct value
 // next parameter device id
 pSlaveParameters := pSlaveParameters + SIZEOF(IoConfigParameter);
 pSlaveParameters^.dwParameterId := 2; // Product ID is always 2
 pSlaveParameters^.dwValue := dwDeviceId;
 pSlaveParameters^.wLen := 32; // Bitlength
 pSlaveParameters^.wType := TypeClass.TYPE_DWORD;
 pSlaveParameters^.dwFlags := 16#34; // Value is a direct value
 // next parameter revision
 pSlaveParameters := pSlaveParameters + SIZEOF(IoConfigParameter);
 pSlaveParameters^.dwParameterId := 3; // Revision ID is always 3
 pSlaveParameters^.dwValue := dwRevision;
 pSlaveParameters^.wLen := 32; // Bitlength
 pSlaveParameters^.wType := TypeClass.TYPE_DWORD;
 pSlaveParameters^.dwFlags := 16#34; // Value is a direct value

 // next parameter devicestring for search of corresponding device in the
 // repository
 stModuleID :='0000 0001';
 // It is the same string as the <DeviceIdentification><ID> element.
 wLen := INT_TO_WORD(len(stModuleID))+1;
 pSlaveParameters := pSlaveParameters + SIZEOF(IoConfigParameter);
 pSlaveParameters^.dwValue :=
 SysMemAllocData(stComponent,wLen,ADR(udiResult));
 IF pSlaveParameters^.dwValue <> 0 THEN
 pSlaveParameters^.dwParameterId := 4; // Device ID is always 4
 SysMemCpy(pSlaveParameters^.dwValue,ADR(stModuleID),wLen);

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 157 of 157
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 pSlaveParameters^.wLen := wLen * 8; // Bitlength
 pSlaveParameters^.wType := TypeClass.TYPE_STRING; // type string
 pSlaveParameters^.dwFlags := 16#32; // Pointer to data
 END_IF
 pSlaveConnector := pSlaveConnector + SIZEOF(IoConfigConnector);
 wConnectorCount := wConnectorCount + 1;
 END_IF
 END_IF
END_FOR
pnCount^ := wConnectorCount;
// Set the number of devices successfully found
IF bScanWithPending THEN
 // Pending is supported then just return the found number of devices and set
ERR_PENDING
 // IoDrvScanModules is called again to free the allocated memory.
 IoDrvScanModules := Errors.ERR_PENDING;
ELSE
 IoDrvScanModules := Errors.ERR_OK;
 // Pending is not available. Return all found devices. Allocated memory will be freed
either in the next scan call or must be
 // freed in FB_Exit to prevent a memory loss.
END_IF

If only V3.5SP2 and later should be supported then this could be used:

Member variables for function block
m_ScanConnector: IoConfigConnector;
m_aSlaveParameters: ARRAY[0..3] OF IoConfigParameter;
m_stDeviceId : STRING;

In the implementation there is no need to dynamically allocate or free memory.
The IoDrvScanModules just returns always 1 found device or 0 if nothing found.
m_ScanConnector.pParameterList := ADR(m_aSlaveParameters[0]);
m_aSlaveParameters[3].dwValue := ADR(stDeviceId);
ppConnectorList^ := ADR(m_ScanConnector);
pnCount^ := 1;

The method has to return Errors.ERR_OK if all devices are done.

Information to the parameters:

Fixed parameter ids returned by IoDrvScanModules

Parameter
ID

Type Description Mandatory/Optional

1 DWORD Vendor ID M
2 DWORD Product number M
3 DWORD Revision M
4 STRING <DeviceDescription><ID> M
5 DWORD Slot index for slot devides

(0 first slot)
O

6 STRING Reserved for special data
types

O

7 BOOL Used for IoMgrIdentify
True, if identify enabled.

O

8 WORD ModuleTypeCode
Used for module type
code of connector to find
the correct connector if
more than one connector
is possible to add the
devices

O

Additional parameters:

It is possible to add additional parameters starting with ID 10. For example the station name or
node id could be passed to the device scan dialog. Additional parameters will be shown in an
extra column. If the parameter ID is also available in the device description then the parameter
values will automatically copied to the devices after inserting the devices. The access rights of
the parameter are set to readwrite then the column is editable.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 158 of 158
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Diagnostic information:

RTS_RESULT IoDrvGetModuleDiagnosis(IoConfigConnector *pConnector):

With this function, device specific diagnostic information are stored in the connector (diagnostic
flags).

7.2.3 ICmpIoDrvParameter
This interface is used to get access to the system parameter of a device.

RTS_RESULT IoDrvReadParameter(IoConfigConnector *pConnector, IoConfigParameter
*pParameter, void *pData, unsigned long ulBitSize, unsigned long ulBitOffset):

With this function, the I/O-manager reads the value of a device parameter. This function is
typically called, if an online-service with a parameter read request is sent to the I/O-manager.

RTS_RESULT IoDrvWriteParameter(IoConfigConnector *pConnector, IoConfigParameter
*pParameter, void *pData, unsigned long ulBitSize, unsigned long ulBitOffset):

With this function, the I/O-manager writes the value of a device parameter. This function is
typically called, if an online-service with a parameter write request is sent to the I/O-manager.

7.3 Optional Interfaces
There are several specific optional interfaces that an I/O driver can implement. These interfaces can
be device or bus specific. Optional interfaces are for example:

ICmpIoDrvDPV1: Interface for the DPV1 Profibus protocol

ICmpIoDrvBusControl: Interface to control a fieldbus (Start, Stop, Reset)

ICmpIoDrvProfibus: Interface for Profibus Sync/Freeze feature

7.4 I/O Manager
The I/O-Manager is the central component for managing all I/O-drivers and providing the access to the
I/O-configuration. The name of the component is CmpIoMgr and the interface is named ICmpIoMgrItf.

IO data consistency is realized in the generic part of the CmpIoMgr component. Thus it is not
necessary that each IO driver separately takes care of this. If there is an active IO data exchange for
reading inputs, writing outputs, or starting bus cycle on an IO-driver instance, each part will be
protected against getting called from any other. This protection is done by a processor atomic bit
operation and not via a semaphore and thus is a non-blocking operation.

An I/O driver must register its instance after creating at the I/O-Manager. Therefore, two functions of
the interface must be used:

RTS_HANDLE IoMgrRegisterInstance(IBase *pIBase, , RTS_RESULT *pResult):

This function should be used to register your I/O driver instance. Therefore the IBase pointer
must be transmitted to the I/O-Manager.
A handle to the internal management entry is returned. This handle can be used to remove the
instance from the I/O-Manager.

RTS_RESULT IoMgrUnregisterInstance(IBase *pIBase):

This function is used to deregister the I/O driver instance from the I/O-Manager.

7.5 Access to the I/O Configuration
The I/O-Configuration is downloaded to the runtime system as an initialized IEC data structure list.

Typically the I/O driver is called from the I/O-manager if a new I/O-configuration is downloaded. But
during the IoDrvUpdateConfiguration() call, the I/O driver must search e.g. for a special connector or

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 159 of 159
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

special parameter of a connector. Therefore the I/O-manager provides the following functions to get
access to the I/O-configuration:

IoConfigConnector* IoMgrConfigGetFirstConnector(IoConfigConnector *pConnectorList, int
*pnCount, unsigned short wType):

Get the first connector in the connector list.

IoConfigConnector* IoMgrConfigGetNextConnector(IoConfigConnector *pConnectorList, int
*pnCount, unsigned short wType):

Get the next connector of the connector list.

IoConfigConnector* IoMgrConfigGetFirstChild(IoConfigConnector *pConnectorList, int
*pnCount, IoConfigConnector *pFather):

Get the first child of a specified connector.

IoConfigConnector* IoMgrConfigGetNextChild(IoConfigConnector *pConnectorList, int
*pnCount, IoConfigConnector *pFather):

Get the next child of a specified connector.

The following functions provide access to parameters of specified connectors:

IoConfigParameter* IoMgrConfigGetParameter(IoConfigConnector *pConnector, unsigned long
dwParameterId):

Get the parameter specified by the parameter Id.

unsigned long IoMgrConfigGetParameterValueDword(IoConfigParameter *pParameter,
RTS_RESULT *pResult):

Get a DWORD parameter specified by Id.

unsigned short IoMgrConfigGetParameterValueWord(IoConfigParameter *pParameter,
RTS_RESULT *pResult):

Get a WORD parameter specified by Id.

unsigned char IoMgrConfigGetParameterValueByte(IoConfigParameter *pParameter,
RTS_RESULT *pResult):

Get a BYTE parameter specified by Id.

void * IoMgrConfigGetParameterValuePointer(IoConfigParameter *pParameter, RTS_RESULT
*pResult):

Get a POintER parameter specified by ID.

7.6 I/O Drivers in C/C++
An I/O driver that is written in C or C++ looks similar to an I/O driver written in IEC except the start up-
and shutdown phase. This difference is explained in this chapter.

An I/O driver in C/C++ must register its component interface at the component manager at start up of
the runtime system (see chapter 2.9) in the ComponentEntry function. This is identical for all
component written in C or C++.

After that, the typical start up sequence with the corresponding hooks is called by the component
manager. In the CH_INIT hook, the I/O driver should detect its supported devices and should create
one instance for each device with its local CreateInstance() function. After that, the I/O driver should
register these instances at the I/O-manager or the Component-Manager. In the example code of the
IoDrvTemplate, this looks like:

case CH_INIT:
 {

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 160 of 160
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 int iInstance = 0;
 RTS_RESULT Result;
 IBase *pIBase = (IBase *)CAL_IoDrvCreate(0, CLASSId_CIoDrvTemplate, iInstance, &Result);
 CAL_CMRegisterInstance(CLASSId_CIoDrvTemplate, iInstance, s_pIBase);

7.7 I/O Drivers in IEC
The instance of an I/O driver written in IEC is created by CODESYS. This instance is created at the
moment, a device is added in the graphical configuration, that has a reference to this IEC driver in the
device description. In the device description typically the library and the function block with the driver is
specified.

The initialization and detection of the devices is typically done in the FB_Init method of the driver FB or
a specific init function, that can be specified in the device description too (3S drivers uses mostly the
Initialize() method).

For the autodetection, a special static FB can be used in the driver FB, so the detection of all card
must be done only once for all driver instance, e.g.:

VAR_STAT
 s_HilscherCardMgr : HilscherCardMgr;
END_VAR

HilscherCardMgr is here a special FB, that detects all cards in its FB_Init method.

The implementation of the interfaces and the access to the I/O-configuration are equivalent for the
driver in IEC as it was described in the chapters before for the C/C++-drivers.

7.8 Diagnostic Information
The diagnostic information consists of two different parts:

1. Bit-Field in every connector for the general diagnostic information

2. Extended diagnostic information of a device with detailed information

The Bit-Field can be used e.g. for the online-diagnostic information in the device tree to see, if one
device has an error or has some information for the user.

The extended diagnostic information can be used to display some device specific information about an
error or a special detected state.

These parameters are explained now in detail.

7.8.1 General diagnostic information bit-field
The actual state of a device can be published in a bit-field, that is a generic part of each connector.
This is a bit-field (32-Bit) with the following meaning:

Bitname Bit-
Value

Is set by Description

CF_ENABLE 0x0001 IO-Config Connector enabled in
the IO-configuration

CF_DRIVER_AVAILABLE 0x0010 CmpIoMgr A driver has registered
to this device, so the
device will be
supported by a driver.

CF_CONNECTOR_FOUND 0x0020 IoDriver Connector found
(device detected)

CF_CONNECTOR_CONFIGURED 0x0040 IoDriver Connector configured

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 161 of 161
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

CF_CONNECTOR_ACTIVE 0x0080 IoDriver Connector active
(bus is active)

CF_CONNECTOR_BUS_ERROR 0x0100 IoDriver Bus error

CF_CONNECTOR_ERROR 0x0200 IoDriver General error

CF_CONNECTOR_DIAGNOSTIC_AVAILABLE 0x0400 IoDriver Extended diagnostic
information available

The Connector flags must always be set out of the IO-diver with the functions
IoMgrConfigSetDiagnosis() and IoMgrConfigResetDiagnosis() of the IO-manager to set and reset
single diagnostic bits.

If CF_CONNECTOR_DIAGNOSTIC_AVAILABLE is set, two diagnostic parameters out of the device
description are used to transmit further extended information.

This bitfields is monitored by CODESYS, if the target is online.

If everything is OK (the bits CF_ENABLE, CF_DRIVER_AVAILABLE, CF_CONNECTOR_FOUND,
CF_CONNECTOR_CONFIGURED, CF_CONNECTOR_ACTIVE are set), the following Icon is
displayed at the corresponding device (connector):

If something is wrong (one of the bits CF_CONNECTOR_BUS_ERROR, CF_CONNECTOR_ERROR
or CF_CONNECTOR_DIAGNOSTIC_AVAILABLE is set or one of the other bits is not set), the
following Icon is displayed at the corresponding device (connector):

After a new initialization of the fieldbus (new download, reset of application) the state of a fieldbus
(CF_CONNECTOR_ACTIVE flag is set or not) depends on whether the fieldbus is already running or
not. This means that it depends on the fieldbus, if the connector has got a green (fieldbus already
running) or an red (fieldbus not running) icon after a new initialization.

The table shows the icons of some field busses after a new initialization:

Fieldbus Icon after new
Initialization

Description

3S CANopen stack Initialization is done in the first cycles of the application.

3S Ethercat stack Initialization is done in the first cycles of the application.

3S Modbus TCP Initialization is done in the first cycles of the application.

3S Modbus Serial Initialization is done in the first cycles of the application.

3S SERCOS stack Initialization is done in the first cycles of the application.

Hilscher CIF Profibus Fieldbus is started at the end of IoUpdateConfiguration.

Hilscher CIFX Profibus Fieldbus is started at the end of IoUpdateConfiguration.

Hilscher CIFX EthernetIP Fieldbus is started at the end of IoUpdateConfiguration.

Hilscher CIFX Profinet Fieldbus is started at the end of IoUpdateConfiguration.

7.8.2 Extended diagnostic parameter
The parameter with the attribute “diag” can be a structure, string or whatever. This contains the
extended diagnostic information of this device, if the corresponding device dialog with the register card
“Status” is opened in CODESYS. In this situation, a IoDrvReadParameter()
/IoDrvReadParameterById() is called of the corresponding driver of the device.

The parameter can be specified in the device description as followed:
<Parameter ParameterId="327936" type="local:TSlaveDiag">
 <Attributes channel="diag" download="true" functional="false"
offlineaccess="read" onlineaccess="read" />
 <Default>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 162 of 162
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 <Element name="Status1">0</Element>
 <Element name="Status2">0</Element>
 <Element name="Status3">0</Element>
 <Element name="MasterAddress">0</Element>
 <Element name="IdentNumberHigh">0</Element>
 <Element name="IdentNumberLow">0</Element>
 <Element name="ExtDiag en">58</Element>
 <Element name="ExtDiag">[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0
,0,0]</Element>
 </Default>
 <Name name="local:Id327936">SlaveDiag</Name>
 <Description name="local:Id327936.Desc">ProfiBus DP slave
diagnostic information</Description>
 </Parameter>

7.8.3 Extended diagnostic acknowledge parameter
To acknowledge the extended diagnostic information, there is a second parameter with the attribute
“diagAck”. This is always a bool parameter to reset the CF_CONNECTOR_DIAGNOSTIC
_AVAILABLE bit. This is executed by pressing the Diag Acknowledge button in the device dialog. In
this situation, a IoDrvWriteParameter() /IoDrvWriteParameterById() is called of the corresponding
driver of the device.

After pressing this button, the diag flag CF_CONNECTOR_DIAGNOSTIC_AVAILABLE must be reset
by the IO-driver. After this, the parameter with the “diag” attribute is never read by CODESYS, until
CF_CONNECTOR_DIAGNOSTIC_AVAILABLE is set the next time.
 <Parameter Parameter”d="327937" type="std:BOOL">
 <Attributes channel="diagack" download="true" functional="false"
offlineaccess="read" onlineaccess="readwrite" />
 <Default>0</Default>
 <Name name="local:Id327937">SlaveDiagAcknowledge</Name>
 <Description name="local:Id327937.Desc">ProfiBus DP slave
diagnostic acknowledge</Description>
 </Parameter>

7.8.4 Implementation notes
To realize an identical behaviour of all IO-drivers regarding the IO-diagnostic information, some
implementation details and requirement must be known:

Requirement Details

R01 The diagnostic bits in the Bit-Field must be written cyclically from the IO-driver itself!
For this, the standard IO-driver interface function IoDrvGetModuleDiagnosis()
contains the cyclic diagnostic transfer. This function is not called automatically from
the runtime kernel. Typically, this function is called implicit in the IO-driver in
IoDrvStartBusCycle.

R02 IoDrvGetModuleDiagnosis() must only set the diagnostic bits cyclically and must not
read any time consuming specific diagnostic information of a slave! So the runtime of
this function must be as short as possible, because this has an effect on the cycle
time of an IEC-task!
If the time is too long to set the information in one cycle, only diagnostic information of
a few slaves should be read per cycle!

R03 If a slave is disabled in the IO-configuration, no diagnostic information may be set
(CF_ENABLE is disabled in this case)

R04 If a slave is configured but not available physically (e.g. bus is disconnected), the
diagnostic information must be updated always!

R05 Unimportant extended diagnostic information should be acknowledged and handled
by the IO-driver implicitly. This depends on the type of fieldbus:
Profibus DP:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 163 of 163
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

For example, if a slave informs about the activation of the watchdog is a information,
that can be implicitly acknowledged.

R06 The relevant extended diagnostic information must be available, until this parameter
is acknowledged by the user (or the program!) with the extended diagnostic
acknowledge parameter!

7.9 IO Consistency
At the IO-update (reading inputs and writing outputs) all IO-channels must be transmitted task-
consistent. That means only if a task has finished its IO-update completely, the IO-channels are
allowed to transmit to the periphery!

An IO-Update must reach the following 3 different constraints:

1. Consistency

2. Jitter

3. Latency

Task consistency must always be maximum! That means, IOs must be updated by a task contiguous.
This means not, that a task cannot be interrupted during an IO update by another task.

Jitter means the time shift between the calculated start time of a task and its real start time. This jitter
should be minimum to avoid a bad real time influence.

Latency is the time shift between the IOs are updated until they are updated at the hardware. This
should be minimum too, to have a maximum real time behaviour.

To reach these 3 goals, the following mechanism are used in the runtime system:

• Bits are written in an atomic way, so Inputs and outputs must not be pre-processed

• Bus cycle must not be executed during IOs update of another task to realize consistency! To
avoid jitter, the bus cycle is moved or delayed when it can be done. Only a latency will occur in
this situation.

• A collision during a bus cycle can only be resolved by a delay of the interrupt task. This leads
to a small jitter, but no latency. This is the only situation that is actually not handled in the
runtime!

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 164 of 164
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

I Q BCodeT1

I QT2 Code

Collision during reading inputs

I B

Buscycle Delay

I Q BCodeT1

QT2 Code

Collision during writing outputs

B

Buscycle Delay

I Q

I QCodeT1

T2 Code

Collision during buscycle

B

Execution Delay

I

Q B

B

Reading task specific inputs

Q Writing task specific outputs

C Task application code

B Buscycle trigger

Priority T1 > T2

7.9.1 Consistency in the IO Driver
The IO-consistency is realized by the IO-manager only. But to realize this consistency with a maximum
performance, the following conditions must be fulfilled with support by the IO-driver:

1. 1. Placeholder of IoStandard.library V3.1.3.2 must be integrated in the target description

2. 2. IoDriver must set the DRVPROP_CONSISTENCY property flag for the Io-Manager (with the
interface function IoMgrSetDriverProperties())

3. 3. SysCpuTestAndSet / SysCpuTestAndReset must be used for each bit input and output access in
the IoDriver!

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 165 of 165
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

7.10 External CAN Sync
By default, CAN Sync packets are sent cyclically from the IEC bus cycle task. This means that, under
bad circumstances, the CAN Sync packet will have a jitter which is equal to the jitter of this cyclically
called task.

In order to generate a more accurate sync signal, it is possible to generate those packets externally
from a hardware timer and to trigger the CAN task from this timer.

7.10.1 CAN L2 API
When sync is enabled in a CAN project, the 3S CANOpen stack calls tries to enable the external sync
mechanism of the CAN driver. This will be successful if the driver implements the following two
functions of the CAN L2 driver API:

• CMD_SetBlock()

• CMD_SetCycle()

The function CMD_SetBlock() is called to pass the sync packet down to the driver. CMD_SetBlock() is
getting a block handle from a block which contains the sync packet. This function takes control over
the passed block handle. This control is given back to the calling function at the next call of
CMD_SetBlock().

The function CMD_SetCycle() is called by the CAN L2 to define the cycle time in which a sync packet
will be generated. This time value is given in microseconds and should be used to program a hardware
timer.

7.10.2 Timer ISR
Within the timer ISR, the CAN driver needs to send the packet to the CAN. After a send interrupt has
signaled that the sync packet was send, the driver needs to send an event to the motion task.

CAN Timer ISR example:

s_pClonedSyncBlock = CAL_CL2_MsgClone(CanNet, pSavedSyncBlock, &error);

if(error == CL2_NO_ERROR) {

 CMD_Send(CanNet, s_pClonedSyncBlock, 0, 0);

}

Timer ISR

CAN
Mini Driver

IEC Motion Task

CAN Bus

Call

Event

Send

Timer ISR CAN Timer ISR

CAN Send ISR

CAN Chip

IEC Motion Task

Call Write to

Interrupt Event

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 166 of 166
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

CAN Send ISR:

if(s_pSyncBlockCloned == hBlock) {

/* Wake up the Motion Task */

if((s_hEventCanSync != RTS_INVALID_HANDLE)) {

CAL_SysEventSet(s_hEventCanSync);

 }

}

7.10.3 Motion Cycle Time
When you are using a target with external sync, you are creating a motion task which is triggered by an
external event. But this also means that you won’t define a cycle time for this task. This time will be
implicitly defined with the external sync period.

But, because the SoftMotion stack needs to know the cycle time of the task on which it is running, you
need to set this time within your CAN driver manually. This can be done directly in the function
CMD_SetCycle(), because in this function you get the sync period.

To get the task handle of the motion task, as well as the sync event, you need to register on the event
„TaskCreateDone“ of „CmpSchedule“. You should search for your event name and save a handle to
this event, as well as to the task handle, in a static variable of the driver.

Example of CMD_SetCycle():

/* set cycle time of IEC task */

if(s_hTaskCanSyncInfo != NULL)

s_hTaskCanSyncInfo->tInterval = dwCycle;

/* program hardware timer */

…

7.11 Byte order specific data handling in IO driver
When developing an IO driver for CODESYS Control, the byte order of the target platform must be
regarded. This chapter describes how to create a portable IO driver which could be executed on both
Motorola- and Intel-byte order platforms.

7.11.1 Bits handling in BYTE/WORD/DWORD
One of the basic tasks during driver development is to control separate bits. For example this could be
the handling of digital inputs/outputs or handling of control bits in the registers of your peripheral
device.

The CODESYS runtime system provides several functions for bit handling to the drivers’ developer.

The function SysCpuTestAndSetBit() sets (bSet = 1) or resets (bSet = 0) a specified bit in the bit string
with length nLen. Pointers to data must correspond to the type which is specified by nLen. The function
will return ERR_OK if after the operation the bit has a changed value. The usage of this function is
thread- and interrupt safe. If you want to set- or reset a bit within a WORD or DWORD, he behaviour of
the function depends on the byte order of the platform. Let’s consider how bits are handled on Motorola
and Intel byte order platforms.

For example the following call is executed

SysCpuTestAndSetBit(&dwData, 4, 5, TRUE):

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 167 of 167
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Platform with Intel-byte order:

Platform with Motorola-byte order:

As shown in the picture above, the function sets the bits within the DWORD according to the byte
order of the platform. That means that the value of the data accessed by pAddress is independent of
the byte order of the platform, but the appropriate, different bit number is set in memory. In this
example on both kinds of platforms the value of the accessed data is equal to 32. But while bit number
5 is set on Intel byte order,, we are setting bit 29 on Motorola byte order.

If the function SysCpuTestAndSetBit() is used for exchanging data between several software
components of the firmware (for example for tasks synchronization), the position of the bits in memory
controlled by the function doesn’t matter because all intercommunicating parts have the same byte
order and correspondingly access the same memory by the same bit number.

To set/reset a specific bit in the bit string independently of byte order you can use the following fact.
The behaviour of the function is independent of the platform if nLen = 1, e.g. it the function accesses
bit in byte. So the following code will handle the same bit in memory on Motorola and Intel byte order
platform:

unsigned int BitOffsetInDword;unsigned int BitOffsetInByte;

ByteOffset = BitOffsetInDword / 8;

BitOffsetInByte = BitOffsetInDword % 8;

pbyData = &dwData;

pbyData = pbyData + ByteOffset;

SysCpuTestAndSetBit(pbyData, 1, BitOffsetInByte, TRUE);

This code for example could be used for handling a special bit in the control register of any peripheral
device.

RTS_RESULT SysCpuTestAndSet(unsigned long* pul,int iBit):

This function is used for testing and setting a bit in a DWORD.

RTS_RESULT SysCpuTestAndReset(unsigned long* pul,int iBit):

This function is used for testing and setting a bit in a DWORD.

All these functions are available in C and IEC.

ATTENTION: Please always use a pointer to correct the data type in these functions. Functions
SysCpuTestAndSet/ SysCpuTestAndReset may never be used for controlling a bit in a Byte, even if
the bit number was always expected to be less than 8. Such code will be executed without any

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 168 of 168
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

problems on an Intel CPU but it will cause a damage of the memory because the number of the bit will
not fit into the byte specified by the pointer. When you are using the newer interface
SysCpuTestAndSetBit() you will not encounter these problems, because the pointer now points to a
BYTE and not to a DWORD anymore.

7.11.2 Helper functions for I/O update
One of the main tasks during I/O driver development in the runtime system is writing I/O update
functions (see chap. 7.2.2) which are responsible for coping I/Os values from/to the hardware (bus).
Target and bus could have different byte order. For example in case of Modbus the I/Os are
transmitted in Motorola byte order but the target might have Intel byte order. To simplify the handling of
IOs the runtime system provides several helper functions to the driver developer:

• IoMgrCopyInputLE()

• IoMgrCopyInputBE()

• IoMgrCopyOutputLE()

• IoMgrCopyOutputBE()

Postfix LE of the helper functions means that the bus has Little-Endian (Intel) byte order and
accordingly BE means Big-Endian (Motorola) byte order. The byte order of the target platform is
detected automatically.

7.11.3 Representation of bit-fields in IO configuration
The values of I/Os can be monitored and controlled in the I/O configuration of a device. The standard
possibility to represent digital IOs is using bit fields (see chap. 6.4.1.1). If the target has Intel byte order
the bit channels will be displayed in the following way:

If the target has Motorola byte order, the bytes inside the word will be swapped. Therefore the Bytes
within the Word will be swapped to the target byte order.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 169 of 169
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

CODESYS provides a possibility to change the representation of a bit field and swap bytes
correspondingly to the type used in the IO configuration. For this purpose please define a setting in the
device description of the PLC as described in chap 0. This helps to make the representation more user
friendly and independent from a target byte order.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 170 of 170
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

8 Symbolic IEC Variable Access

In many systems where a controller or plc is running, there is the requirement of accessing the
variables of the IEC application to display in a HMI, a SCADA system or to provide these variables by
an OPC server.

The access to these variables must be always symbolic, that means via the names as they are
declared in the IEC application.

Symbols are transferred to the controller in the form of a (automatically generated) child-application,
when the father-application (application, the symbols of which are exported) gets downloaded.

In CODESYS V3, the symbolic access was completely redesigned. The following chapters give you
some basic information to understand this new architecture.

8.1 Architecture
The symbolic IEC variable access based on the resolution of variable names in the runtime system!
The resolution is done via a special child IEC application, that contains all symbolic information with
the variables of the father application. The following figure shows this issue.

Figure 13: Schema with the symbolic application

For each variable in the father application, there will be generated an FB with the name, data type,
access rights and the reference to the value of the variable.

To access this symbolic information, the runtime system provides the component CmpIecVarAccess.

Figure 14: CmpIecVarAccess interface

Application1

 GVL

 nCounter : INT;

Child of Application 1

 “Application1.GVL.nCounter”
 Data type: INT
 Reference to value of the variable

Functional

Interface

PLC Program

Application1

Application2

Symbols of
Application1

CmpIecVarAccess

Online

Interface

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 171 of 171
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

8.2 Database of Symbolic Information
To specify, which variables are exported to the symbolic application, actually there is only the possibility
to specify an attribute at the declaration of the POUs.

For example the variable nCounter in the GVL can be exported with the following attribute:

{attribute 'symbol':='readwrite'}

VAR_GLOBAL

 nCounter : int;

END_VAR

In the future it is planned, that this configuration can be done in a graphical editor.

The symbolic information is generated as functions blocks in IEC in an own child application under the
father application, which variables should be exported.

A branch node FB is here generated for each application or POUs. A leaf node FB is generated for
each variable. Each FB has here three references:

1. Reference to the father node

2. Reference to the first brother node

3. Reference to the first child node

With these references, a complete hierarchic tree with the symbol information is generated in
CODESYS.

A branch node contains the following information:

1. Name of the node

2. References to father, brother and child node

A leaf node contains the following information:

1. Name of the node (variable name)

2. References to father, brother and child node

3. Data type of the variable

4. Access rights (read and/or write access possible)

5. Pointer to the variable value

For a better understanding, we make a small example. An application (Application1) exports a variable
from its global variable list (GVL) and the variables of the main program (PLC_PRG).

Figure 15: Example of a tree with symbolic nodes

Branch Node

„Application1“

Branch Node

„GVL“

Branch Node

„PLC_PRG“

Leaf Node

„nCount“, INT

Leaf Node

„A“, DINT

Leaf Node

„B“, DINT

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 172 of 172
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

The Application1 has declared a GVL:

{attribute 'symbol’:='readwrite'}

VAR_GLOBAL

 nCounter : int;

END_VAR

Additionally Application1 has declared a POU:

{ attribute 'symbol’:='readwrite'}

PROGRAM PLC_PRG

VAR

 A : Dint;

 B : Dint;

END_VAR

As you can see, the description of the symbolic information is strong hierarchic and avoids duplicated
names. So the description is compressed maximal.

Arrays are stored compressed respectively collapsed, that means for each array it is generated only
one FB for the complete array. The addresses for the index access are calculated internally.

8.3 Variable Access Interfaces
The symbolic application with all the symbolic FBs can be accessed in the runtime system after
downloading the applications. The access can be done with the CmpIecVarAccess component. This
component provides a functional interface that can be used by other component in the runtime system.

8.3.1 Functional interface
The functional interface provides access routines to browse hierarchically through the complete
variable tree with all variables that are exported. Additionally there are routines to arrange a set of
variables to one list and to use this list afterwards to read or write all variables in the list with only one
function call

8.3.2 Online interface
The variable access interface can also be used online. Here a client can send service to browse
through the variables, to register variable lists and to read and write variables.

8.4 Data Consistency
The variable access component has one feature, to optional read a list of variables consistent to the
IEC tasks. This functionality can be used with the VLF_CONSISTENT option flag at creating a variable
list.

8.5 Behaviour at Download/Online Change
If something changed in the father and an online change or download is done in the father, the
symbolic client application is deleted and must be downloaded separately. This will be solved in the
future, that an online change or download of the father will automatically update the symbolic client
application with a download or online change too.

8.6 Usage on Small Embedded Systems
On small embedded system, there is no resource to store a symbolic application additionally on the
target. The symbolic application can become much larger than the application itself.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 173 of 173
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

For this small targets, there is needed a father runtime system, that hold this symbolic application as a
representative. This father runtime updates the variables from the child runtime with the so called data
server. A data server consists of generated IEC code, that uses the online communication to get the
values of the variables. A separate symbolic application in the father allows the symbolic access to
these variables. The next figure shows this architecture.

Figure 16: Architecture of symbolic access on embedded systems

A client connects typically to the target that it would like to use symbolic access. In the case of an
embedded runtime, the client connects to the target a request the symbolic information. Because the
symbolic information is not available on the target, the target returns the network address of the father
that hold the symbolic information. So every target knows about the position in the network of the
symbolic information. If the symbolic information resides on the target itself, then the target returns the
first symbolic request from the client with the symbolic information.

Father Runtime System (PLC1)

App1

Data Server

nCount : INT;

Symbolic Application

“PLC2.App2.nCount”, INT

Embedded Runtime System (PLC2)

App2

 nCount : INT;

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 174 of 174
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

9 Customer Adaptations and Expansions

There are several different possibilities to extend and adapt the runtime system to your own needs.

You can use the provided and existing components and can arrange them to a set of components with
the functionality you need. This issue is called scalability. For some components, you have the choice
under several different implementations with different functionality and resource requirements.

As the second possibility, you can configure these provided standard components to your needs. Here
you can specify the behaviour and the resource needs of the runtime system. This issue is called
configurability.

The third way is write your own component to replace an existing component or to add this component
additionally to the runtime system. This is called extensibility.

Each of these issues will be described in detail in the following chapters.

9.1 Configuration
The runtime system is configured at compile time via pre-processor defines. The following adjustments
can be made via the defines:

• Link type of the runtime system (static, dynamic, mixed or C++)

• Choice of components

• Static configuration of components

The required defines can be set in the workspace itself or in the file “sysdefines.h”.

9.1.1 Link type of the runtime system
The runtime system can be linked in several ways. The runtime system can be configured in static or
dynamic mode. Static configuration is implemented at compile time and cannot be modified afterwards.
In contrast to static configuration, dynamic configuration is implemented at runtime and can be
modified at each restart.

Because the M4 mechanism is used for creating the header files and macros are used for calling
functions, no code changes are required for switching between different types.

1. Static:

If the “STATIC_LINK” define is set, all components are linked statically and the result is an
executable file. It is then no longer possible to load components such as certain IO drivers. All
components to be used must be available at compile time. If a component is changed the
whole runtime system has to be rebuilt.

This link type is particularly useful for embedded systems that offer no option for reloading
modules dynamically.

2. „Mixed“:

If the “MIXED_LINK” define is set, core components are statically linked to an executable file,
while further modules can be dynamically reloaded as required. Which files are linked statically
is specified in the make file or in the workspace.

In this way it is possible to make a basic system available while dynamically loading certain
optional components such as IO drivers.

3. C++:

If the “CPLUSPLUS” define is set, the result is a runtime system in C++.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 175 of 175
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

4. Dynamic:

Without one of the defines mentioned above, the runtime system is linked dynamically. The
executable file only contains the component manager. All components are dynamically
reloaded.

The result is a system with maximum flexibility. Only components that are actually required
have to be loaded. If a component changes only an individual module has to be replaced, not
the whole runtime system.

9.1.2 Choice of components
The choice of components may differ from system to system and can be adapted individually. This is a
significant advantage of strict separation of modules in individual components.

Once components have been selected the component manager must be notified. In mixed and
statically linked runtime systems a preselection is made in the make file or in the workspace, although
an explicit list of components to be loaded still has to be transferred to the components manager. In
this context it is important that all statically linked components are included in the load list of the
component manager.

The load list of the component manager consists of three different lists. Each component only has to
be listed in one of the three lists in order to be loaded.

1. List of system components:

The component manager defines certain components as system components required for its
own tasks. These components have to be included in each runtime system.

• CmpMgr
• SysMem
• SysOut
• SysFile
• SysSem
• SysTime
• CmpLog
• CmpSettings
• CmpMemPool
• CmpChecksum

In the interest of uniform logging the component manager itself is also treated as a component.

2. Static list:

For mixed and statically linked runtime systems it is useful to specify a static list of
components. This list should include all components that were statically linked. The static list is
transferred to the CMInit function, which is called from the main routine as standard.

An example:
StaticComponent s_ComponentList[] = {
 {“CmpApp”, CmpApp__Entry},
 {“CmpBlkDrvUdp”, CmpBlkDrvUdp__Entry},
 . . .
 {“SysTime”, SysTime__Entry},
 {“”, NULL}
};
int main(int __argc, char *__argv[])
{
 . . .
 CMInit(s_szComponentFile, s_ComponentList);
 . . .

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 176 of 176
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

3. Dynamic list:

Lastly, the list of components to be loaded later can be read via the settings component. This is
particularly useful for modules to be dynamically reloaded.

Example: configuration file (CFG-file):
[ComponentManager]
Component.1=SysTask
Component.2=SysSem
Component.3=SysEvent
Component.4=SysCom
Component.5=SysSocket
Component.6=SysOut
. . .

9.1.3 Static configuration of components
Each component can have specific pre-processor defines for different component parameters (e.g.
buffer sizes). The defines are assigned a default value in the interface header file.

#ifndef APPL_NUM_OF_STATIC_APPLS

 #define APPL_NUM_OF_STATIC_APPLS 8

#endif

Defines can be changed at compile time by assigning a new value in file sysdefines.h.

#define APPL_NUM_OF_STATIC_APPLS 4

A description of the defines for a particular component can be found in the interface header file of the
component.

9.1.4 Dynamic configuration (CmpSettings)
Depending on the system the setting component may use a different backend for reading the setting
from a medium. The following backends are currently available:

• Configuration via an INI file

• Configuration via the registry

• Static configuration with compiled values (mainly for embedded applications)

• In addition to static configuration there is the option to read in a dynamic configuration via the
setting component. This can be modified with each restart.

Users always have the option of implementing their own backend for supporting an additional medium.

Since the INI file is the most frequently used backend, the following examples are based on the INI
notation.

The whole configuration is subdivided into blocks. Each block is allocated to a component. The block
contains the settings for the component. The following notation is used throughout:

[Component]

<Key>=<Value

A list of runtime system settings is shown below, arranged by components. All settings and their
description can also be found in the interface header file of a component.

• Component Manager

[ComponentManager]
Component.1=SysTask
Component.2=SysSem
. . .

List of components to be load.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 177 of 177
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• Router

[CmpRouter]
NumRouters=1 //Number of routers
0.MainNet=ether 0 //Main net, where the first
 //router is inserted
0.Subnet.0.Interface=COM<1> //First subnet of first

//router; here “Com1”
• Block Driver UDP

[CmpBlkDrvUdp]
itf.0.ipaddress=192.168.100.27 //fix IP address of network

//interface
itf.0.name=main //Interface name
itf.0.networkmask=255.255.255.0 //Interface subnet mask
itf.0.portindex=1 //Fix port for CODESYS
 //addresses 0-3 (1740-1743)
itf.1.ipaddress=192.168.0.1 //Example of second
interface
itf.1.name=vxwin
itf.1.networkmask=255.255.255.0

• Block Driver Seriell

[CmpBlkDrvSimpleCom]
Baudrate=57600 //Baudrate of serial

interface
ComPort=1 //Port number of interface
HalfDuplexAutoNegotiate=1 //RS485 half duplex mode
EnableRtsToggleHandshake=1 //Currently only used to set

the RTS_CONTROL_TOGGLE
handshake on MS Windows
based systems. This is
needed for some externals
RS232/RS485 adapters to
switch the data direction on
the (half-duplex) line.v

EnableAutoAddressing //Enable the auto addressing
feature

• Application

[CmpApp]
CreateBootprojectOnDownload=0 //Creation of a bootproject
 //at download
StoreBootprojectOnlyOnDownload=0 //Creation of a bootproject

//only at download
PersistentForce=0 //Persistent Forcing
Application.1=Application //Name of first boot
 //application
Application.2=BootApp2 //Name of second boot

//application
RetainType.Applications= Cyclic //Retain type:
 //-Cyclic
 //-OnPowerfail
 //-InSRAM

• Scheduler

[CmpSchedule]
EnableLogger=1 //Activation of a logger

//for the scheduler
MaxProcessorLoad=80 //Maximum load of CPU
Timeslicing.Mode=Internal /Timeslicing Mode:
 //NONE: no timeslicing

(default)
 //intERNAL: internal

//timeslicing

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 178 of 178
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

 //EXTERNAL: external
//timeslicing

Timelicing.PlcSlicePercent=80 //time slice of PLC in
//percents

Timelicing.PlcSliceUs=4000 //time slice of PLC in Us
Timelicing.StartOnProcessorLoad=1 //Timeslicing depending on

//maximum processor load
SchedulerPriority=5 //Priority of scheduler
SchedulerInterval=1000 //Interval of schedulers in

//Us

• Logger

[CmpLog]
Logger.0.Name=StdLogger //Name of first Logger
Logger.0.Enable=1 //activation of logger
Logger.0.MaxEntries=1000 //Maximum number of log

//entries in internal queue
Logger.0.MaxFileSize=5000 //Maximum file size
Logger.0.MaxFiles=3 //Number of log files
Logger.0.Backend.0.ClassId=0x010B //ClassId of first backend
Logger.0.Backend.1.ClassId=0x0104 //ClassId of second backend
 //Ids read from CmpItf.h
Logger.1.Name=CommLog //Name of second logger
Logger.1.Enable=1 //etc.

• Retain

[CmpRetain]
Retain.SRAM.Address=0x10000000 //Physical start address

SRAM
Retain.SRAM.Size //Größe SRAM

In addition to general settings, the components of the system adaptation interface may also have
system-dependent settings. These settings are identified by separate abbreviations in the key

[component]
<shortcut of the customization>.<Key>=<Value>

• Files

[SysFile]
FilePath.1=./Boot, *.app, *.ap_ //files with extension app

//or ap_ are stored in
//folder ./Boot

FilePath.2=./var, *.ret, *.frc //files (*.ret, *.frc) are
//stored in ./var

• Timer

[SysTimer]
VxWorks.TimerSource=Auxiliary //Timersource of scheduler

//Auxiliary: Auxiliary-Clock
//System: System-Clock
//default: high prior task

• Interrupt

[SysInt]
WinCE.UseIRQSysIntrMapping=1 //Mapping of an IRQ on a
 //system IRQ

• Shared Memory

[SysShm]

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 179 of 179
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

WinCE.MapPhysical=1 //setting flag MapPhysical
WinCE.DividePhysicalAddressBy=256 //calculation of physical

//address

9.1.5 Typical configurations of the CODESYS Control WinV3 runtime system
There are the following typical configurations of the CODESYS Control Win V3 runtime system:

• Single tasking systems (embedded)

• Timer based systems.

• Multi tasking systems (full)

9.1.5.1 Embedded Runtime System
An “embedded runtime” we call a system that typically has only one main loop for the execution of all
tasks in the runtime system (communication, IEC tasks, etc.). For this kind of runtime system, a
minimal system is sufficient.

For this type of runtime system, the configuration can be the following:
[ComponentManager]
Component.1=CmpIecTask
Component.2=CmpMgr
Component.3=CmpEventMgr
Component.4=SysMem
Component.5=CmpSettings
Component.6=CmpChannelServer
Component.7=SysExcept
Component.8=CmpMemPool
Component.9=CmpChecksum
Component.10=CmpAddrSrvc
Component.11=SysFile
Component.12=SysTime
Component.13=CmpMonitor
Component.14=CmpBinTagUtil
Component.15=SysShm
Component.16=CmpLog
Component.17=SysSocket
Component.18=CmpChannelMgr
Component.19=CmpRouter
Component.20=CmpSrv
Component.21=SysCpuHandling
Component.22=CmpRetain
Component.23=CmpCommunicationLib
Component.24=CmpScheduleEmbedded
Component.25=CmpBlkDrvUdp
Component.26=CmpApp

9.1.5.2 Timer runtime system
The timer runtime uses processor timers to operate separate cyclic tasks. This is typically used on
small embedded controllers with several timers. The behaviour is much better than the embedded
runtime, because for example, the communication has no influence on some higher priority tasks (IEC
tasks), because the communication is done in the main (background) loop and the higher priority tasks
are executed in the timer interrupts.

For this type of runtime system, the configuration can be the following:
[ComponentManager]
Component.1=CmpIecTask
Component.2=SysEvent
Component.3=CmpMgr
Component.4=CmpEventMgr
Component.5=SysMem
Component.6=CmpSettings
Component.7=CmpChannelServer

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 180 of 180
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Component.8=CmpScheduleTimer
Component.9=SysExcept
Component.10=SysTimer
Component.11=CmpMemPool
Component.12=CmpChecksum
Component.13=CmpAddrSrvc
Component.14=SysFile
Component.15=SysTime
Component.16=CmpMonitor
Component.17=CmpBinTagUtil
Component.18=SysShm
Component.19=CmpLog
Component.20=SysSocket
Component.21=CmpChannelMgr
Component.22=CmpRouter
Component.23=CmpSrv
Component.24=SysCpuHandling
Component.25=CmpRetain
Component.26=CmpCommunicationLib
Component.27=CmpBlkDrvUdp
Component.28=CmpApp

9.1.5.3 Full runtime system
As a full runtime we specified a system that is based on a preemptive multitasking operating system.
Here the various operations can be executed by tasks with different priorities. So a very fine adjustable
system behaviour can be reached. A full runtime contains typically all of the available features of a
CODESYS runtime.

For this type of runtime system, the configuration can be the following:
[ComponentManager]
Component.1=CmpIecTask
Component.2=SysEvent
Component.3=CmpMgr
Component.4=CmpEventMgr
Component.5=SysMem
Component.6=CmpSettings
Component.7=CmpChannelServer
Component.8=SysExcept
Component.9=CmpMemPool
Component.10=CmpChecksum
Component.11=CmpAddrSrvc
Component.12=SysFile
Component.13=CmpSchedule
Component.14=SysTime
Component.15=CmpMonitor
Component.16=CmpBinTagUtil
Component.17=SysShm
Component.18=CmpLog
Component.19=SysSocket
Component.20=CmpChannelMgr
Component.21=SysTask
Component.22=CmpRouter
Component.23=CmpSrv
Component.24=SysCpuHandling
Component.25=CmpRetain
Component.26=CmpCommunicationLib
Component.27=CmpBlkDrvUdp
Component.28=CmpApp

9.1.5.4 Gateway runtime system
For this type of implicit runtime system, the configuration can be the following:

[ComponentManager]
Component.1=SysTime
Component.2=SysTask
Component.3=SysEvent

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 181 of 181
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Component.4=SysSem
Component.5=SysCom
Component.6=SysSocket
Component.7=SysExcept
Component.8=SysShm
Component.9=SysSemProcess
Component.10=SysCpuHandling
Component.11=SysInt
Component.12=CmpRouter
Component.13=CmpChannelMgr
Component.14=CmpChannelClient
Component.15=CmpBlkDrvUdp
Component.16=CmpAddrSrvc
Component.17=CmpGateway
Component.18=CmpGwCommDrvTcp
Component.19=CmpNameServiceClient
Component.20=CmpCommunicationLib
Component.21=CmpBlkDrvShm

[CmpRouter]
EnableParallelRouting=1
0.MainNet=ether x
0.NumSubNets=1
0.SubNet.0.Interface=BlkDrvShm

[CmpGwCommDrvTcp]
ListenPort=1217

9.1.5.5 Visualization runtime systems (target visualization CODESYS HMI)
For the Target-Visualization and the special target visualization CODESYS HMI the position and size
parameters of the window as well as the update rate of the Target-Visualization can be configured in
the runtime system ini-file in section CmpTargetVisu.

Example:
[CmpTargetVisu]

Application.Updaterate_ms=200
Application.WindowPositionX=50
Application.WindowPositionY=50
Application.WindowSizeWidth=200
Application.WindowSizeHeight=200
Application.WindowType=0

App2.WindowPositionX=300
App2.WindowPositionY=300
App2.WindowSizeWidth=200
App2.WindowSizeHeight=200
App2.WindowType=1

9.1.6 Create your own configuration with the RtsConfigurator
For your system, you may want to define a specific set of components, including standard components
and own components such as IO drivers (see below).

As there are a lot of dependencies between the components, it may not be easy to find a valid
combination of components. To solve this problem, you can use the tool “RtsConfigurator”. This
windows tool checks the dependencies between the components according the m4 files. It helps you to
select the components you need.

If you have a valid configuration, it can create the following output files for you:

- A list of used components

- A list of used C-Files

- A template for a makefile

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 182 of 182
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

- A *.cfg file for the component manager

- A *.h file with definitions needed for you main*.c file (COMPO_INIT_DECL and
COMPO_INIT_LIST)

- A reference documentation for the selected components

Please check the RTSconfigurator.chm file for further details.

9.2 Implementing own components
The architecture of runtime system V3 is based on components, i.e. each related functional area is
represented with an independent component. The runtime system can be expanded with further
components at any time.

The CmpTemplate component can be used as a template for a new component. It contains all required
files and the whole generic part.

9.2.1 Global include files
Each runtime system component requires global information that is contained in general header files:

CmpItf.h Definitions of the component manager functions required for exchanging function
pointers:

CmpStd.h Definitions and global “#include” instructions. Operating system-specific header files
are also defined here.
All components link this file as the first header.

CmpErrors.h Standardised definition of error return values for the API functions

These files are located in the root directory (“\”) of the runtime system.

9.2.2 Include files of the components
Each component must define at least two header files. The interface file contains the interface for the
component the dependency file contains the dependencies of the component.

These two header files are generically generated from the associated description files via the M4
mechanism. Any changes must always be implemented in the description files (m4 files). Manual
modification of the header files is not provided for and not advisable.

9.2.2.1 Interface file
The interface file CmpXXXItf.h is generated from file CmpXXXItf.m4. It contains the interface for the
component. The interface files of the core components are stored in directory /Components.
Customer-specific interface files should be stored in the component directory under /Customer
Components/<Customer>/<Component>.

The file contains

• Defines and structures defined by the component.

• Definition of the interface functions and the required macros (USE_, EXT_, ...)

The interface file is not only included by the respective component, but also by all other components
requiring access to the functions of this interface.

9.2.2.2 Dependency file
The dependency file CmpXXXDep.h is generated from file CmpXXXDep.m4. This file contains all
dependencies for the component. The dependency file of the core components is stored in the
component directory /Components/CmpXXX. Customer-specific dependency files are also stored in
the component directory.

The file contains:

• Required include statements

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 183 of 183
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

• EXPORT_STMT: Summary of all EXP_ defines, i.e. all functions exported by the component.

• IMPORT_STMT: Summary of all required GET_ defines, i.e. importing of functions required by
the component.

• USE_STMT: Summary of all required USE_ defines, i.e. definition of the function pointers of
the functions required by the component.

The dependency file is only included by the respective component, not by other components.

9.2.3 Generation of include files
Functions cannot be called directly, because the runtime system is linked in different ways with the
same sources and can be compiled for C or C++. This is why different macros are used.

Since it would be impossible to create header files with the required macros by hand, we use the GNU
M4 macro pre-processor, which generates comprehensive header files from simple description files.

For each component the developer creates an interface file and a dependency description file. Both
files are available as input files for the GNU M4 macro pre-processor. In a prebuild step from each file
an include file is generated, which is integrated in the respective C files. As an alternative to a prebuild
step simple batch files can be used for the compile process. These batch files are included in the
toolkit sources and can be used as templates for own files.

Since the files are analyzed by a mac pre-processor, all content that cannot be interpreted is taken
over unchang–d – e.g. comments, definitions of constants, structs, etc.

The parameters for the macro calls should always be enclosed in quotation marks, i.e. “`” an’ “’”.

Comments for functions or for the component follow a certain scheme so that they can be interpreted
by the configuration tool:
A function comment directly precedes the function definition. As usual in Java, it starts with the “/**”
character and ends with “*/”. The configuration tool ignores new comment lines starting with a single
“*”. The comment itself is created in XML, using the following tags:

• <description>: Contains a description of the component/function.

• <author>: optional

• <copyright>: a copyright note

• <version>: Version number

The following tags are defined specially for functions:

• <param name=“paramName“ type={“IN“|“OUT“|“INOUT“}>: a parameter
description

• <returns>: Description of the return value, for most components a list of possible error
values.

9.2.4 Source code file

9.2.4.1 General interface
Each component contains the following functions: ComponentEntry(), ExportFunctions(),
ImportFunctions(), and HookFunction(). The following examples are again taken from the
CmpTemplate component.

• ComponentEntry() is the central entry function for each component. It is called by the
component manager when the system starts up (see also Chapter 2.1.2 “Operating principle or
the component manager”. The function is furnished with a structure for exchanging function
pointers between the component manager and the component. The component receive
access functions from the component manager and returns pointers for the 3 functions
ExportFunctions(), ImportFunctions(), and HookFunction().
The function should be implemented as follows:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 184 of 184
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

DLL_DECL int CDECL ComponentEntry(INIT_STRUCT *pInitStruct)

/* Used to exchange function pointers between component manager and components.

Called at startup for each component.

pInitStruct: IN Pointer to structure with:

pfExportFunctions OUT Pointer to function that exports
 component functions

pfImportFunctions OUT Pointer to function that imports
 functions from other components

pfGetVersion OUT Pointer to function to get component
 version

pfRegisterAPI IN Pointer to component manager function to
 register a api function

pfGetAPI IN Pointer to component manager function to
 get a api function

pfCallHook IN Pointer to component manager function to
 call a hook function

Return ERR_OK if library could be initialized, else
 error code

*/

{

 pInitStruct->CmpId = COMPONENT_ID;

 pInitStruct->pfExportFunctions = ExportFunctions;

 pInitStruct->pfImportFunctions = ImportFunctions;

 pInitStruct->pfGetVersion = CmpGetVersion;

 pInitStruct->pfHookFunction = HookFunction;

 pInitStruct->pfCreateInstance = CreateInstance;

 pInitStruct->pfDeleteInstance = DeleteInstance;

 s_pfRegisterAPI = pInitStruct->pfCMRegisterAPI;

 s_pfGetAPI = pInitStruct->pfCMGetAPI;

 s_pfCallHook = pInitStruct->pfCMCallHook;

 s_pfCreateInstance = pInitStruct->pfCMCreateInstance;

 return ERR_OK;

}

• ExportFunctions() is also called when the system starts up. It uses the EXP_xxx macros for
notifying the component manager of exported functions. Using the EXPORT_STMT macro
from the interface file the function can be implemented as follows:

static int CDECL ExportFunctions(void)

/* Export function pointers as api */

{

 /* Macro to export functions */

 EXPORT_STMT;

 return ERR_OK;

}

• ImportFunctions() is also called when the system starts up. It uses the GET_xxx macros for
obtaining required function pointers from the component manager.
Using the IMPORT_STMT macro from the interface file the function can be implemented as
follows:

static int CDECL ImportFunctions(void)

/* Get function pointers of other components */

{

 /* Macro to import functions */

 IMPORT_STMT;

 return ERR_OK;

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 185 of 185
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

}

• The component manager calls the HookFunction() when a hook occurs. The function enables
suitable responses to hooks, e.g. calling of an imported function with the CAL_xxx macro:

/* Example for a Hook function */

static int CDECL HookFunction(unsigned long ulHook, unsigned long ulParam1,
unsigned long ulParam2)
{
 switch (ulHook)
 {
 case CH_INIT_SYSTEM:
 break;
 case CH_INIT:
 break;
 case CH_INIT_DONE:
 break;
 /* Cyclic */
 case CH_COMM_CYCLE:
 break;
 case CH_EXIT_COMM:
 break;

 case CH_EXIT_TASKS:
 break;
 case CH_PRE_EXIT:
 break;
 case CH_EXIT:
 break;
 case CH_EXIT_SYSTEM:
 break;
 default:
 break;
 }
 return 0;
}

9.2.4.2 Component specific implementation
In addition to the general interface, which is largely identical for all components, each component also
has a component-specific implementation. This is where functions must be implemented that are
exported based on the interface description. In addition, purely internal functions can be implemented.
While the general interface deals with pure component management, the actual functionality of the
component is implemented here.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 186 of 186
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

9.3 Implementation Notes

9.3.1 Error returning
Each function either returns an error code or a handle.

An error code is of type RTS_RESULT (int). The error codes are defined in CmpErrors.h. If no error
occurred ERR_OK = 0 is returned.

In the event of an error the handle of type RTS_HANDLE is RTS_INVALID_HANDLE (=-1). If this is
the case, an error code is returned via a pointer.

Since the pointer test for error code NULL is required at many points, the error code can be allocated
with the following macro. This macro contains an automatic test for NOT NULL.

RTS_RESULT* pResult;
RTS_SETRESULT(pResult, ERR_OK);

9.3.2 Memory
The runtime system should not require dynamic memory management. Even so, an “unlimited”
number of tasks should be possible.

The following procedure is used to achieve this:

A component intended for managing a variable number of structures (e.g. tasks, applications,
communication connections) uses a static memory for a fixed number of units. The component creates
a MemoryPool using the CmpMemPool component. The MemoryPool contains a defined number of
blocks with a certain size. Once all blocks are assigned, each memory pool can be extended
dynamically.

The whole memory management is handled via the interface of the CmpMemPool component.

9.3.3 Allocation of IDs

9.3.3.1 Vendor ID
The Vendor ID is allocated by 3S for each manufacturer. It uniquely identifies the manufacturer. In the
customer-specific component the following define must be set.

#define CMP_VENDORID <VendorID> /*16 bit*/

Please note: all necessary defines can be found in CmpItf.h

9.3.3.2 Component ID
Each component requires a unique, 32 bits long component ID. This ID is generated from the Vendor
ID and a component-specific ID. The high word of the component ID corresponds to the Vendor ID, the
low word to the component-specific ID.

If a manufacturer re-implements a core component, only the high word changes (i.e. the Vendor ID),
but not the low word.

If a completely new component is implemented, the manufacturer must allocate a new component-
specific ID. The range between 0x2000 and 0xFFFF is available for this purpose.

#define CMP_Template <ID> /*16 bit*/

The range between 0x2000 and 0x3FFF is available for this purpose.

/* OEM specific components */

#define CMPID_CmpStartOEM 0x00002000

#define CMPID_CmpEndOEM 0x00003FFF

The component ID uniquely identifies the manufacturer who implemented the component and indicates
whether or not it is a core component.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 187 of 187
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

9.3.3.3 Interface ID
The interface ID uniquely identifies an interface in the runtime system. Each core component in the
runtime system implements at least one interface. Manufacturers can replace any core component
with their own, as long as it implements the same interface.

Please note, different components may implement the same interface. Examples of these components
are different IO and block drivers.

If a completely new component is implemented, the manufacturer must allocate a new interface ID.
The range between 0x2000 and 0x3FFF is available for this purpose.

/* OEM specific start id */

#define ITFID_ICmpStartOEM 0x00002000

#define ITFID_ICmpEndOEM 0x00003FFF

9.3.3.4 Class ID
The class ID uniquely identifies the different classes in the C++ runtime system.

If a completely new component is implemented, the manufacturer must allocate a new class ID. The
range between 0x2000 and 0x3FFF is available for this purpose.

/* OEM specific start id */

#define CLASSID_CCmpStartOEM 0x00002000

#define CLASSID_CCmpEndOEM 0x00003FFF

9.3.4 Importing of functions
Functions for other components must first be imported before they can be used. All functions are
imported via the GET_xxx macro in the ImportFunctions() function. The component first has to be
notified of the functions via the USE_xxx macro. The IMPORT_STMT macro from the dependency file
consolidates all GET_xxx macros of the component. The USE_STMT macro from the dependency file
consolidates all USE_xxx macros of the component.

The complete import generically handled via the general component interface. When new components
are developed, only functions to be imported have to be included in the dependency description file
(m4). The m4 mechanism will then correctly generate the import statement and function calls.

9.3.5 Calling of imported functions
Within a component imported functions are called with the CAL-xxx macro. Since functions of optional
components do not necessarily have to exist in the runtime system, before an imported function is
called its existence should be verified. The CHK_xxx macro is used for this purpose. A call looks as
follows:

. . .

If (CHK_xxxFunc)

{

 Result = CAL_xxxFunc();

}

. . .

9.3.6 Exporting of functions
The component manager is notified of exported functions via the EXP_xxx macro in function
ExportFunctions(). The EXPORT_STMT macro from the dependency file consolidates all EXP_xxx
macros of the component.

Just like the import, the export of functions is handled by the general component interface. The
statements are generated by the m4 mechanism. The functions to be exported must be specified in the
interface description file.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 188 of 188
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

9.3.7 Linkage with the runtime system
 The newly created component can be used in the runtime system provided it implements the general
interface, has its own IDs, and all required header files have been generated. Two steps are required
for this:

1. The component must be linked.

The way in which the runtime system is linked is specified during configuration of the runtime
system (Chapter 3.1). Three options are available: static, dynamic, or mixed.

• If the runtime system was linked statically, the new component must be included in the
workspace or the makefile, and the whole runtime system must be recompiled.

In addition, an entry for this component must be added to the MainLoadComponent function
when linking statically

• If the runtime system was linked dynamically, the new component must be available as a
reloadable module.

• If the runtime system was linked in mixed mode, the component can either be linked
statically to the runtime system, or it can be available as a reloadable module.

2. The component manager must be notified of the component.

As soon as the component was linked or is available as a module, the component manager
must be notified of the new component. This can be done in different ways (see Chapter
3.1.2):

• If the component is statically linked with the runtime system, it is useful to include the new
component in the static list of components.

• If the new component is not to be included in the static list, it must be listed in the dynamic
list.

9.3.8 Order of the INIT Hooks
Chapter 3.1.1 already explained the default actions which are executed in the INIT Hooks of the core
runtime components. Beside this, there are some general rules for every hook, which need to be taken
into account when writing your own components.

System
Komponenten
aufrufen

Standard
Komponenten
aufrufen

Ressourcen
anlegen
(Events,
Semaphoren, ...)

Ressourcen
öffnen
(Service Handler,
Events, ...)

CH_INIT_SYSTEM

CH_INIT_SYSTEM2

CH_INIT

CH_INIT2
CH_INIT3
CH_INIT_TASKS
CH_INIT_COMM

9.4 Libraries
In CODESYS V3 we no longer distinguish between internal and external libraries. Each library can
contain functions and blocks that are either implemented internally (in IEC) or externally (in ANSI-C or
C++).

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 189 of 189
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

External implementation is based on a component of the runtime system, internal implementation is
based directly on the CODESYS library.

9.4.1 Creating a library in CODESYS
For an implementer a CODESYS V3 library is not much different to a normal project. Declare your
function, your method or your function block via the POUs tab in the way you are used to from IEC. If
you now save the library and add it to your library repository you can use it in any project.

If you add the library in a library manager you will find that only the POUs are visible under the POU
tab; all entries under the Devices tab are hidden. This feature is very useful for implementing test or
sample code within the library. This code is not visible if the library is used in another project. The test
or sample code can be executed by opening the library as a project.

Each POU within a library can be implemented in IEC (i.e. internally) or in the runtime system (i.e.
externally). By default it is assumed that the POU is implemented in IEC. To implement the POU in the
runtime system activate the option ‘External Implementation’ under ‘Properties’ in the Build tab of the
respective POU.

During compilation the system does not use the IEC code of the function, but instead the name of the
function is entered in a list that is downloaded during the download. This function is linked if a function
with the right name is found in the RTS.

External POUs have to be treated exactly like internal POUs. All inputs and outputs must be defined.
All local variables must be defined in function blocks. Local variables must not be defined in methods
or functions. VAR_STAT variables cannot be used in the RTS!

9.4.2 Implementation of external POUs in the runtime system

9.4.2.1 Declaration in the runtime system
In principle external implementation in the RTS imitates the parameter transfer used for IEC functions
in CODESYS. Each external function has exactly one parameter. This parameter is a pointer to a
structure in which the parameters defined in the IEC programming system are listed. The
parameterization details differ for functions, methods and function blocks.

In the RTS, no more external reference table is necessary! To export the external library functions for
the plc program, only the flag for external libraries must be declared in the interface m4-file (see
chapter 2.8.1).

9.4.2.2 Declaration of functions
The following declarations have to be implemented in the .m4 file of your component:

• Declare a structure <function name>_struct with elements in the following order:
- All INPUT variables and all IN_OUT variables in the order defined in IEC.
- All OUTPUT variables in the defined order.
- The implicit OUTPUT with the name of the function comes last.

• Define a function as follows:

DEF_API(`void’,`CD’CL’,`<function
name>’,`(<functionname>_struct*’p)’,1,0)

The “1” after the transfer parameter list indicates that this function can be called from IEC. In
the runtime system a function pointer to this function is registered in the component manager.

Example:

1. IEC:
FUNCTION MyExternalFunction : Dint
VAR_INPUT
 p1 : Dint;

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 190 of 190
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

END_VAR
VAR
END_VAR

2. M4:
typedef struct
{
 RTS_I32 p1;
 RTS_I32 Result;
} myexternalfunction_struct;

DEF_API(`v’id’,`CD’CL’,`myexternalfunction’,
`(myexternalfunction_struct ’p)’,1,0)

3. Associated header:
typedef struct
{
 RTS_I32 p1;
 RTS_I32 Result;
} myexternalfunction_struct;

void CDECL CDECL_EXT myexternalfunction(myexternalfunction_struct *p);

9.4.2.3 Declaration of function blocks
Internally a function block is called like a method. For each function block a “__Main” method is
created implicitly that is called when the function block is called.

In addition to the Main method there are three predefined initialization methods:

1. FB_Init: This method is called during initialization of the FB.
METHOD FB_Init : bool

VAR_INPUT
 bInitRetains: bool;
 bInCopyCode: bool;
END_VAR

2. FB_Exit: This method is called when the application is terminated.
METHOD FB_Exit : bool
VAR_INPUT
 bInCopyCode: bool;
END_VAR

3. FB_Reinit: This method is called during an Online Change involving a change in data layout. It may
be used to reassign saved data pointers if the data have moved due to the online change.

METHOD FB_Reinit : bool
VAR_INPUT
END_VAR

Initialization methods are called in the following situations:

Download FB_Exit (bInCopyCode := FALSE);
 FB_Init (bInitRetains := TRUE; bInCopyCode := FALSE);

1. Online Change:
Wenn der FB vom Datenlayout geändert wurde:
FB_Exit (bInCopyCode := TRUE);

 FB_Init (bInitRetains := FALSE; bInCopyCode := TRUE);
For all other FBs:

 FB_Reinit ();

Reset FB_Exit (bInCopyCode := FALSE);
 FB_Init (bInitRetains := FA LSE; bInCopyC de := FALSE);

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 191 of 191
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Reset Col FB_Exit (bInCopyCode := FALSE);
 FB_Init (bInitRetains := TRUE; bInCopyCode := FALSE);

2. Start PLC and load application:
FB_Init (bInitRetains := FA LSE; bInCopyC de := FALSE);

3. Stop PLC and delete application
 FB_Exit (bInCopyCode := FALSE);

If a function block is marked to be linked externally, this means:

1. The “Main” method is linked externally

2. The “FB_Init” method is not linked externally (initialization method), unless the method was explicitly
entered in the IEC program and is marked to be linked externally.

3. The “FB_Exit” method is not linked externally (initialization method), unless the method was
explicitly entered in the IEC program and is marked to be linked externally.

4. All other methods are not linked externally. Methods to be linked externally must be marked as
such.

Since a function block call corresponds to a method call, please refer to the following section regarding
the declaration of an implicit method. This section focuses on the structure of a function block.

The instance of a function block contains all function block variables in the declared order plus a
pointer to the virtual function table.

This pointer always comes first in the structure. This pointer is only used for late binding. In the
following we assume that function calls are statically linked.

Example:

1. IEC:
FUNCTION_BLOCK fubextern
VAR_INPUT
 a,b,c: int;
END_VAR
VAR_OUTPUT
 x,y,z : bool;
END_VAR
VAR
 m,n,o : Dint;
END_VAR

2. M4:
typedef struct
{
 /*pointer to virtual function table */
 void* __VFTABLEPOintER;
 /*inputs*/
 short a;
 short b;
 short c;
 /*outputs*/
 char x;
 char y;
 char z;
 /*locals*/
 int m;
 int n;
 int o;
}fubextern;

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 192 of 192
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Please note that the structure of the instance is solely determined by the order of the declaration,
rather than through affiliation with an input, output, or var block. If the outputs and inputs were
interchanged in the IEC declaration, they would also have to be interchanged in C.

9.4.2.3.1 Declaration of methods
Basically, methods are functions with an additional implicit parameter, i.e. a pointer to the
function block instance. In principle, the same method names can be used for different
function blocks. The following convention is used for the name of method to be linked in the
RTS:

<fbname>__<method name> (two underscores)

The following declarations have to be made in the RTS:

• Declare a structure <fbname> as described in 5.3.2.

• Declare a structure <fbname>__<methodname>_struct with elements in the following
order:

1. All INPUT variables and all IN_OUT variables in the defined order.

2. A pointer to instance:

3. fbname *__INSTANCEPOintER;

4. All OUTPUT variables in the defined order.

5. The implicit OUTPUT with the name of the method comes last.

• Define a function as follows:
DEF_API(`void’,`CD’CL’,`<fbname>__<methodname>’,
`(<fbname>__<methodname>_struct*’p)’,1)

Example:

If the function block defined in 5.3.2 is to be implemented in the RTS, the following code must be
defined in the RTS (see also CmpTemplate):

1. IEC:

FUNCTION_BLOCK fubextern
VAR_INPUT
 a,b,c: int;
END_VAR
VAR_OUTPUT
 x,y,z : bool;
END_VAR
VAR
 m,n,o : Dint;
END_VAR

2. M4:

typedef struct
{
 /*pointer to virtual function table */
 void* __VFTABLEPOintER;
 /*inputs*/
 short a;
 short b;
 short c;
 /*outputs*/
 char x;
 char y;
 char z;
 /*locals*/
 int m;
 int n;
 int o;

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 193 of 193
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

}fubextern;

/*Structure definition for main method*/
typedef struct
{
 /*pointer on function block instance*/
 fubextern *__instancepointer;
}fubextern_main_struct;

/*Function definition for main method*/
DEF_API(`void’,`CD’CL’,`fubextern__main’,
`(fubextern_main_struct*’p)’,1)

3. Header:

The typedefs are taken over unchanged

void CDECL CDECL_EXT myexternalfunctionblock__main
(myexternalfunctionblock_main_struct *p);

4. Source code:

void CDECL myexternalfunctionblock__main(myexternalfunctionblock_main_struct *p)

{

 /*Do anything*/

 return;

}

9.4.3 Implementation
In the runtime system an IEC function, a FB or a method always becomes a C-function or a C++
method call. Once the function was correctly declared in the m4 file and the interface file was
generated, the function can be implemented in the source code file as usual. Further example from the
CmpTemplate component.

1. IEC:
FUNCTION MyExternalFunction : Dint
VAR_INPUT
 p1 : Dint;
END_VAR
VAR
END_VAR

2. M4:
typedef struct
{
 RTS_I32 p1;
 RTS_I32 Result;
} myexternalfunction_struct;

DEF_API(`void’,`CD’CL’,`myexternalfunction’,
`(myexternalfunction_struct ’p)’,1,0)

3. Header:
typedef struct
{
 RTS_I32 p1;
 RTS_I32 Result;
} myexternalfunction_struct;

void CDECL CDECL_EXT myexternalfunction(myexternalfunction_struct *p);

4. Source code:

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 194 of 194
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

void CDECL myexternalfunction(myexternalfunction_struct *p)
{
 p->Result = p->p1 + 1;
}

9.5 Adaptations to Specific Operating Systems or Processors
The adaptation to operating systems that are not supported by 3S, the adaptation can be done by your
own. For this, we provide source code for all System-Components as a template (under the directory
$\Platforms\SysTemplates).

Because each system-component can be implemented and tested separately, the runtime system
should run with no error after complete porting.

The most important component is SysTime. The following two functions must be implemented first:

1. SysTimeGetMs: With this function, all timeouts are calculated

2. SysTimeGetUs: With this function, the scheduler gets its time base to execute the IEC tasks.

Both functions must provide monotonic rising ticks in a millisecond (SysTimeGetMs) and a
microsecond (SysTimeGetUs) resolution.

The second important component is the SysMem component. With the component, access to all
memory (except static memory) is managed.

9.6 Licensing
Some of the products from 3S - Smart Software Solutions GmbH with costs, which are downloaded to
and used on the PLC need to be licensed for this PLC.

Examples for licensed products are:

• CANopen Master / -Slave

• Modbus Master / -Slave

• HMI

• Softmotion

• ...

There are a few possible ways to get such a license for your PLC.

9.6.1 Derivate based licensing
To be able to use licensed CODESYS products, like fieldbusses and libraries, on your PLC, you need
to have a valid license file called "3S.dat" for your PLC. This file is (by default) fixely bound to on target
derivate. The informations that are checked are the following:

• Operating System

• CPU Type

• Vendor ID

• Target ID

• Device Type

If those values are correct, the licenses which are contained in the license file "3S.dat", can be used on
this PLC.

If those values are not correct, none of the licensed products can be used on this PLC.

If the file is available, but doesn't contain the requested license, the corresponding product will run in
demo mode. The demo period for most products is around 30min.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 195 of 195
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

If the license file is missing completely there are two ways to react on that:

1. If the compile flag LICENSE_THROWEXCEPTION is set for the application, the PLC will
switch to an exception state after loading this application.

2. If the compile flag LICENSE_THROWEXCEPTION is not set for the application, the product
will not be licensed, an error will be logged but the application will still be able to run.

To set this compiler flag flag automatically, you may want to add it to your device description to the
following section:
<DeviceDescription>
<Device>
 <ExtendedSettings>
 <ts:TargetSettings>
 <ts:section name="codegenerator">
 <ts:setting name="compiler-defines">
 <ts:value>LICENSE_THROWEXCEPTION</ts:value>

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 196 of 196
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

10 Coding Guidelines

The runtime system is implemented high portable, whereby some restrictions and specifications may
arise during the implementation of its own components or during the modification of existing
components.

The most important coding standards are explained briefly below.

10.1 General
1. Implementation in standard ANSI-C (no C99 extensions!)

2. No C++ comments in code! Some C-Compilers does not support this.

3. Switch on the highest warning level in the compiler or use strict ANSI-C

4. Every component must implement the standard component interface (see chapter 2.7)

10.2 Naming conventions and identifier
1. The names of all components always begin with Cmp, e.g.: CmpApp for the application

component. The system components always begin with Sys and the IO driver always with
IoDrv.

2. Function names in component interfaces should always have a component prefix attached to
make sure they are unique. The prefix should be as short as possible (ideally 3 or 4
characters), e.g.:
AppCreate(); /* Create component function CmpApp */

3. Customer-specific components should always have the company name attached, e.g.:
CmpApp3S (3S specific components which replace the standard CmpApp component)
or:
Cmp3S (3S specific components, which is loaded as an extension of the runtime
 system)

4. Names of functions, variables and structures in camel case:
• Functions begin with upper case letters
• Variables with lower case letters
• Structures begin with upper case letters

External library functions are always written in lower case, to distinguish them from C
functions, which usually have the same name.

5. Defines are always written in upper case letters, e.g. #define MAX_APPLICATIONS 10
The pre-processor instructions must also have to be written in upper case letters.

6. Function pointers starts with pf as prefix

7. Use Hungarian notation , i.e. the data and memory type should be coded in the variable prefix,
e.g.:
 unsigned long ulNumOfTasks; /* local variable */
static variables with s_ as prefix, e.g. static char s_cTag;

Pointer with p as prefix, e.g. char *pszName;

Function pointers with pf asprefix, e.g. INT_HANDLER *pfHandler;

static arrays with a as prefix, e.g. static unsigned char s_abyBuffer[100];
Note: Static arrays have the prefix a to avoid confusing a variable with a pointer p!

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 197 of 197
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Type of data Prefix Description

char * psz String terminated by zero

Char sz Static string terminated by zero

char c

unsigned char by

short s

unsigned short us

int i or n or b i for index. n for number. b for Bool

unsigned int ui

long l

unsigned long ul

long long ll

unsigned long long ull

float f

double d

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 198 of 198
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

10.3 Data types
The runtime system defines its own typesystem based on ANSI stdtypes.h. The types are defined in
CmpStd.h and starts always with RTS_, e.g. RTS_UI32.

Rules:

Use always the predefined RTS_ datatypes in all interfaces!

Additionally you must use it in all implementations, where a fix size is needed (e.g. L7 service in
communication)!

For all other internal impleemntations it is recommended, to use this datatypes.

For IEC libraries there are the corresponding IEC type definitions in CmpStd.h:
e.g. RTS_IEC_BOOL for an IEC bool value

RTS datatypes:

The standard RTS_ datatypes contains the real size Bits, e.g. RTS_I8 (8 Bits). So the corresponding
size is identical on every platform!

There are some special datatypes which usage is explained here:

Datatype Size in Bits Usage

RTS_HANDLE Size to hold always a
pointer

For every handle in the runtime system

RTS_RESULT 32 For error code handling
RTS_UINTPTR Size to hold always

the address of a
pointer

For pointer arithmetic hold in an unsigned
integral type

RTS_INTPTR Size to hold always
the address of a
pointer

For pointer arithmetic hold in a signed
integral type

RTS_PTRDIFF Size to hold always a
pointer difference for
a buffer offset

Signed integral type that can hold
an array index

RTS_SIZE Size to hold always a
buffer offset

Unsigned integral type that can hold a buffer
offset

RTS_INT Variant size, typical
the platform specific
int size

Data type has no constant size, so be careful
in sharing shuch datatypes with IEC!

RTS_BOOL Variant size, typical
the platform specific
int size

Boolean value (TRUE or FALSE). For best pe
rformance use platform specific int.
Data type has no constant size, so be

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 199 of 199
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

ANSI-C datatypes:

Datatype Range Platform (Bits)

 Min Max 16 32 646 64 7

char

-128 127 1 1 1 1

unsigned char 0 255 1 1 1 1

short -32768 32767 2 2 2 2

unsigned short 0 65535 2 2 2 2

int -2.147.483.648 2.147.483.647 2 4 4 4

unsigned int 0 4.294.967.295 2 4 4 4

long -2.147.483.648 2.147.483.647 4 4 8 4

unsigned long 0 4.294.967.295 4 4 8 4

long long -9.223.372.036.854.755.807 9.223.372.036.854.755.807 8 8 8 8

unsigned long long 0 18.446.744.073.709.551.615 8 8 8 8

float 0 3.40282347E+38

accuracy: 6-digits

mantissa: 23-Bits

exponent: 8-Bits

4 4 4 4

double 0 1.7976931348623157E+308

accuracy: 15- digits

mantissa: 52-Bits

exponent: 11-Bits

8 8 8 8

long double 0 3.4E-4932 1.1E+4932

acccuracy:19- digits

mantissa: -Bits

exponent: -Bits

10 (8)8

10

 10 (8)8

10

void* 2 4 8 8

wchar_t 2 29

4

10

2

9

410

29

410

6 In LP64 data model (used in most Unix and Unix like Systems)
7 In LLP64 data model (used in Windows Systems with Microsoft Visual Studio)
8 On Windows System, long double is used as alias for double
9 On Windows Systems
10 On most Unix and Unix like Systems

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 200 of 200
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

10.4 Component interfaces and dependencies
1. Calling another component interface function must always be called with the CAL_ prefix

(see chapter 2.7).
NOTE:
The CAL_ macro must not be used for calling functions within the same component!

2. Optional dependent interface functions must be checked with the check function CHK_Fct the
availability before calling CAL_Fct !

3. Usually all interface (*Itf.h) and dependency files (*Dep.h) should be created from m4 compiler.
This enables changes to the component link process to be carried out easily.

4. CDECL must precede each function prototype (*Itf.h) and also the implementation of each
function, e.g.:
int CDECL Test(int i); /* prototype in *.itf.h */
int CDECL Test(int i)
{
 …
}

5. CDECL_EXT is created automatically before each function prototype of an external library
function. Is used in all prototypes of external library functions in order to attach huge casts to
these functions.

Therefore this macro must also be used for every implementation, thus:

int CDECL CDECL_EXT __testlibfct (int i); /* prototype in *.itf.h */
int CDECL CDECL_EXT __testlibfct(int i) {…}

6. Only use standard ANSI-C functions and headers (no strcmpi() or similar)!
Don’t use any operating system–specific functions in kernel components!!!

Always use the Sys-API or CMUtils functions for this purpose.

7. Declare all local functions as static (name collisions in the case of static linking)

8. All interface functions of the components should:

• usually returns RTS_RESULT as a standard return value

• always use RTS_HANDLE as handle and RTS_INVALID_HANDLE as invalid handle
value

• if RTS_HANDLE is returned, then always include RTS_RESULT *pResult as a parameter
in the prototype. Hence the exact failure cause can be determined in case the
RTS_INVALID_HANDLE is returned

9. To specify a task, use always one of the following m4-Macros in the Dep.m4 file:

 TASK(`Name’, `Priority):
’This macro is to specify a normal task. Please specify a comment for the documentation:
/**
 * <category>Task</category>
 * <description>
 * Block driver communication task.
 * </description>
 */
TASK(`BlkDrv’dp’, `TASKPRIO_HIGH_’ND’)

 TASKPREFIX(`Name’, `Priority):
Task prefix is used, if specified task name is extended by some additional information (like
a channel number, etc.).

 TASKPLACEHOLDER(`Name’, `Priority):
Placeholder of a task that is replace by the configured name (e.g. by the user defined
name of an IEC-task).

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 201 of 201
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

10.5 Startup sequence
• CH_INIT:

Init your own component local stuff

• CH_INIT2:
You can call other component interface functions
An event provider must create here the event object!

• CH_INIT3:
Further init stuff
An event consumer can open here the existing event and register its callback routine

• CH_INIT_TASKS:
At this hooh you must be aware of multitasking calls!

• CH_INIT_COMM:
Here the communication server are started and open the runtime system the the world around

The same in opposite direction for the shutdown sequence.

10.6 Alignment
Usually you must ensure that all structures are aligned „naturally“. This means that you must align all
byte structure elements to byte boundaries, all 2 byte elements to 2 bytes, all 4 byte elements to 4
bytes, all 8 byte data types to 8 bytes etc.

10.7 Use of special macros
1. Avoid asserts in real error conditions. Asserts should only catch error conditions which the

developer doesn’t await and which cannot occur under normal operation. Those errors are
typically caused by corrupted memory or false locking. When defining an assert, the
RTS_ASSERT macro should be used. This can be defined in the file sysdefines.h

2. Prefix HUGEPTR macro of all pointer variables or use for copying operations, which address a
memory area above 64 kB, e.g.:

unsigned char HUGEPTR *pbyBuffer; /* or */
memcpy((unsigned char HUGEPTR *)pbyDest, (unsigned char HUGEPTR *)pbySrc, Len);

The newly introduced CMSafeMemCpy() utility function, which casts the pointer correctly and
checks the areas, should be used instead of a memcpy.

3. Declare USEIMPORT_STMT instead of USEEXTERN_STMT in Sys___OS modules

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 202 of 202
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Appendix A: Migrating from CODESYS Control Version 2 to Version 3

To migrate from CODESYS Runtime System 2.x to V3, you have to do some adaptations. In this
chapter you will find some hints to move to CODESYS Control 3.

• Target-Settings / Device Config Files: The device configuration files from CODESYS V2.x
have completely changed in CODESYS V3. All information about a target and a device are
stored in Device-Description XML-files. See chapter 6 for detailed information about the
content and structure of a device description.

• Custom- and IO-Driver Interface: IO-drivers must be ported to CODESYS Control V3. In
CODESYS Control 3 you have the possibility to write an IO-driver classical in ANSI-C, but also
in IEC!
The migration of an IO-driver from CODESYS 2 to 3 has to be done in 3 steps:

1. Integration of the new component interface

2. Implementation of the new interfaces (at least IBase and ICmpIoDrv)

3. Adaptation to the new IO-configuration structure (connectors and parameters) and the
new IO-update

• Hooks: Hooks from CODESYS Control 2.x are split into 3 different types of functionalities.
Events are used to notify special component about an event in the runtime system.
Hooks are only used in CODESYS Control V3 to notify every component about an event, like
the start up and shutdown sequences.
The old hooks that are changing settings and configurations in the runtime system are
completely replaced by the settings component. So the behaviour of a runtime is only
dependant of a defined set of settings and not, which custom component changes which hook!

• External Libraries: In CODESYS Control V3, no external library list must be provided by the
component that implements the library functions. You can specify now for each function, if it is
exported as an external library or not. The second main difference to CODESYS Control 2.x is
that all library functions in CODESYS Control V3 have only one pointer to a parameter
structure! This must be changed during migration.

• Custom services: The level 7 services have been changed in CODESYS Control V3 to a
tagged binary format. So here, all services must be adapted to this new tagged format.

• PLC Browser: The PLC-Browser is available in CODESYS Control 3.4 with the component
named CmpPlcShell.

The interface of defining own command has changed. But there is a template component
under $\Templates\CmpPlcShellHandler, that illustrates the handling of commands in own
components.

Additionally to handle commands in a runtime component, in V3 you can handle own
commands in IEC (e.g. in Libraries or IO-drivers).

• RtsSym: This module is replaced by the CmpIecVarAccess interface. The functions are
comparable. The only big difference is browsing the list of variable. In CODESYS Control 2 you
got one big list with all variables. In CODESYS Control 3 you can browse in a hierarchical
order through all symbols.

• Gateway, ARTI, PLCHandler: The Gateway and the ARTI interfaces are no longer supported.
They must be replaced by the PLCHandler. The PLCHandler provides the possibility, to use
connections to CODESYS Control 2.x and V3 runtime versions!
The GClient interface can be replaced by the GwClient interface to use an entry interface in
the CODESYS Control V3 network. But here no symbolic information is available.

• OPC Server: We provide an OPC server (CODESYS OPC Server V3), that enables
connections to runtime systems generation V2.3 and V3 and is released.

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 203 of 203
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Bibliography

[1] CODESYSControlV3_Reference.pdf

[2] PLCHandler Programming Guide.pdf

[3] RTSconfigurator.chm

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 204 of 204
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Change History

Version Description Editor Date

0.1 6.2.2004 TZ 06.02.2004

0.2 Some corrections BR 03.12.2004

0.3 All chapters rearranged, translated and completed AH 08.01.2007

0.4 Review and Rework TZ 09.03.2007

1.0 Formal Review, Rework and Release MN 09.03.2007

1.1 Chap 7.2.2 Figure 13 added AH 14.06.2007

1.2 New section for target settings 6.4.2.1.5 and 6.4.2.1.6 StR 15.10.2007

2.0 Formal Review and Rework, Release MN 18.12.2007

2.1 Note in chap. 6.4.1.3 (#32561); extension in chap.7.4
(#31361), chap. 2.6-2.9 (#32350); 6.4.2.1.2 byte-
addr.mode (#32501); chap. 6.4.2.1.4
max_number_of_applications (#32063); chap. 6.3.2
“alwaysmapping” (#32827); chap. 6.4.1.3, 6.4.2.1.6.2
“placeholderlib” (#33161); chap. 6.4.1.3: “UpdateIosInStop”,
“StopResetBehaviour” (#32806); 6.4.2.1.3 “supportprofiling”;

MN 05.02.2008

2.2 Reworked chapter 6.4.2.1.2 Memory Settings (#32258) BW 05.03.2008

3.0 Release after formal review and rework MN 11.03.2008

3.1 Chap. 3.7.5 (SysFileFlash) and 3.7.6 (SysFlash) added TZ/MN 03.04.2008

3.2 Chap. 6.4.2.1.4 added: Network variables; 3.2.4 boot app.
for HMI (#33655); 6.4.2.1.2: target setting address-
assignment-guid (#32502); 6.4.2.1.6: target setting
simulation-disabled (#34079); 9.1.5.4 + 9.1.5.5: cfg-entries
Gateway + visu (#32166); general rework of chapters
Architecture and Overview on components on functions;
7.8 Diagnostic, 7.9 Consistency; 3.3.4 Bootproject, 3.4
Watchdog handling; 3.9.5 SysFileFlash, 3.8.6 SysFlash; 4
Portings: extended

WH/MN 23.06.2008

3.3 Review and changes in 3.3.4 AH 9.07.2008

4.0 Formal Review and Release MN 9.07.2008

4.1 Adapted chapter 6.4.2.1.7.3 (Exclude Library Category) to
the current implementation (#32665)

KeK 21.07.2008

4.2 Added attribute “SecureOnlineMode” in chapter 6.4.1.5
(Functional)

KeK 31.07.2008

4.3 Formal review and rework MN 03.09.2008

5.0 Release MN 03.09.2008

5.1 Chapter 7.8 extended AH 29.09.2008

5.2 Chapter 7.8 review PhB 01.10.2008

5.3 Chapter 6.4.2.1.2 improved for retain area size AH 01.10.2008

5.4 Chapter 6.4.2.1.2 Review MN 02.10.2008

6.0 Release MN 02.10.2008

6.1 Modifications according to tracker items 35191, 35756,
34803, 34816, 33661

SE 06.10.2008

6.2 Extension of chapter 3.7.1 according to tracker items SE 13.10.2008

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 205 of 205
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Version Description Editor Date
32059, 32631

6.3 Extension of chapter 6.4.2.1.5 according to #34842 SE 20.10.2008

6.4 Added example of SysMemAllocArea TZ 22.10.2008

6.5 Additional information in chapter 7.8 added (#33848),
Review

AH/AS 13.01.2009

7.0 Formal Review, Release MN 13.01.2009

7.1 Chapter 7.9 improved AH 16.01.2009

7.2 Retain behaviour chap. 3.3.5, 6.4.2.1.2, chap. 3.3.5,
6.4.2.1.5 (#36858), 6.4.1.4 (#34273), 6.4.1.3 (#33977),
chap. 9.1.4 (#36145), 6.4.2.1.2 (#35384, as from V3.3!),
chap. 6.3.2 (#31837); chap. 3.5 extended; Kap.6.6
(#35474)

MN/AH/StR 20.01.2009

8.0 Formal Review, Release MN 25.02.2009

8.1 chaps. 2.7 (files); 4.1.1 (service, cfg-file); 4.3 (#35276);
5.3.4 (#36006); 6.4 (devdescr) extensions ; 6.4.4.3
(#37173), 6.4.4.4.3 (#36577); 6.4.4.5 (#37338, #35240),
6.4.5.1.1 (#37098, cycle_control_version_2); 6.4.5.1.3
(#33374); 6.4.5.1.4 (networkvars); 6.4.5.1.5 (#37291,
#37033),), 6.4.5.1.8 (#34619), 6.4.5.1.9 (#37750),
6.4.5.1.10, 6.4.5.1.11 (#35258)

MN 16.04.2009

8.2 Chaps. 7.8.1 General Diagnostic Information Bit-Field:
Startup behaviour

AK 23.04.2009

9.0 Release MN 20.05.2009

9.1 Chap. 6.4.4.1 (CDS-11195), 6.4.5.1.2 (3S), chap.3.3.5,
(CDS-11353), 6.4.5.1.12 (CDS-10239), 6.4.5.1.9 (CDS-
5148)

MN (in
coord.with
developers)

13.07.2009

10.0 Release MN 13.07.2009

10.1 Chap. 7.8.3 (CDS-9195) MN 30.07.2009

10.2 (CDS-10922); 6.4.5.1.3 + 6.4.5.1.3.1 (Task Settings
removed); 6.4.5.1.9 (CDS-7580), 6.4.5.1.1 (CDS-10766);
6.4.4.4.1 (CDS-13848)

AK
MN

25.08.2009
18.02.2010

10.3 Added 5.4.2.1 Parallel Routing JS 03.03.2010

10.4 (CDS-7682); “Motorola Byte Order”; “hexfile” (CDS-9291);
4.3.1 (CDS-11578); 6.4.5.1.3 Online section
(TargetSettings)

MN 18.03.2010

11.0 Release MN 19.03.2010

11.1 CDS-15266:
3.6.3 improved
3.7 created
Appendix A extended
Appendix B updated

AH 01.04.2010

11.2 CDS-15140:
6.4.4.4 needsBusCycle attribute documented
7.2.2 IoDrvStartBusCycle chapter improved

AH 15.04.2010

11.3 CDS-14865: 3.5.3 chapter added for external event tasks AH 15.04.2010

11.4 CDS-727: 3.3.10 chapter added
CDS-17713: 2.4 / 2.5 chapter added
CDS-14331: 2.3 chapter added

AH 27.05.2010

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 206 of 206
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Version Description Editor Date

11.5 CDS-14875: 4.3.2 chapter added
CDS-11734: 7.10 chapter added

MN 08.06.2010

11.6 CDS-17700: chap. 6.4.5.1.9 webvisualization_client added StS 01.07.2010

11.7 CDS-78609: chap. 0 extended MN 07.07.2010

12.0 Release MN 13.07.2010

12.1 CDS-3547: chap. 3.14 License Check AS 26.07.2010

12.2 CDS-17525: Rename Product CODESYS Control V3 in
CODESYS Control V3 (Second Step)

AH 14.10.2010

12.3 CDS-17763: chap. 7.11 added / formal rework DPa /MN 25.10.2010

12.4 CDS-17763: chap. 7.11 reviewed/reworked content IH 26.10.2010

12.5 CDS-19470: chap 0 corrected (Trace) AH 26.10.2010

12.6 chap. 7.11.1, corrections DPa/MN 04.11.2010

12.7 CDS-19279, CDS-17449, CDS-17455: chap. 6.4.5.1.1,
CDS-18387: chap. 6.4.5.1.4.1, CDS-20139

MN/div 06.12.2010

13.0 Release after formal review MN 09.12.2010

13.1 CDS-10897: chap. 6.4.4.6, extended; CDS-20407, CDS-
16903: chap. 0

MHa/MN 22.12.2010

13.2 CDS-20109: chap. 6.4.5.1.9 MN 04.01.2011

13.3 note conc. persist.variables: chap. 6.4.5.1.2 MN 05.01.2011

13.4 CDS-19462 link-all-globalvariables

CDS-21274 constants-in-own-segment, chap. 6.4.5.1.2

CDS-20984 online-change-in-own-segment, chap.
6.4.5.1.2

CDS-19502 optimized_online_change, chap. 6.4.5.1.1

CDS-20985 minimal-structure-granularity, chap. 6.4.5.1.2

MN 22.03.2011

13.5 Review and Rework chap. 6.4.5.1.1 and 6.4.5.1.2 BW 22.03.2011

13.6 Rework acc. To Review: chap. 6.4.4.6, chap.6.3.3 MN 24.03.2011

14.0 Release MN 24.03.2011

14.1 3.3.4.2 corrected and 3.3.4.3 added AH 12.05.2011

14.2 Chapter 1. CODESYS SP removed AH 21.06.2011

14.3 CDS-22659 “retain-in-cycle” MN/AH 08.07.2011

15.0 Release after formal review MN 19.07.2011

15.1 CDS-18873 (chap. 6.4.5.1.5) MN/WH 20.07.2011

15.2 CDS-20032/16581 (chap. 6.4.5.1.2) MN/BW 25.07.2011

15.3 CDS-24565 (chap. 3.4) MN 20.09.2011

15.4 Reviewed chapter 3.4 IH 20.09.2011

15.5 CDS-17996 (chap. 6.4.5.1.2.2) MN/BW 12.10.2011

15.6 In cooperation with responsible assignee: CDS-24218,
CDS-22003 (4.2); CDS-24955 (4.2); CDS-23038 (4.2);
CDS-24102 (3.6.3); CDS-25015 (6.4.5.1.9); CDS-17454
(6.4.4.4)

MN/StR 01.12.2011

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 207 of 207
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Version Description Editor Date

15.7 In cooperation with responsible assignee: CDS-22629 (0),
CDS-25024 (6.4.5.1.10)

MN/BW 02.12.2011

15.8 In cooperation with responsible assignee: CDS-4613 (0),
CDS-24006 (6.4.5.1.2)

MN/StR 05.12.2011

16.0 Release after formal review and rework MN 05.12.2011

16.1 CDS-27255 (3.3.2) MN 09.03.2012

16.2 CDS-27255 (own chapter 3.3.9 + extension, review by AH) MN 12.03.2012

16.3 CDS-21387 (6.4.5.1.4.1 “systemtick”); CDS-19331 (6.4.4.8) MN 20.03.2012

16.4 CDS-27968 MN 28.03.2012

16.5 CDS-15615 (6.4.5.1.4.1) MN 09.05.2012

16.6 CDS-24679 (3.15) AH 15.05.2012

16.7 CDS-25568 (3.10.19.2: Win32.MaxJpegByteArraySize) MN/AH/PB 21.05.2012

16.8 CDS-22641 (6.4.4.6; attribute “functional”) MN 08.06.2012

17.0 Release after formal review and rework MaH 20.06.2012

17.1 CDS-13471 ; dp-register-addressing MaH 20.06.2012

17.2 Little-Endian (Motorola) --> Little-Endian (Intel) (7.11.2) MaH 23.07.2012

17.3 CDS-8251: (6.3) ConnectorTypes updated AH 30.07.2012

17.4 CDS-28345: (6.4.8) BOOL instead of BOOLEAN MN 24.08.2012

17.5 CDS-29303; CODESYS + spellcheck MN 17.09.2012

17.6 CDS-26177: chap. 6.4.5.1.2 BW 20.09.2012

17.7 CDS-31487: chap.1.1: Security note added MN 20.11.2012

17.8 CDS-31487: chap.6.4.5.1.14: object types restriction MN 06.12.2012

18.0 Release after formal review MN 06.12.2012

18.1 Chapter 9.3.3 improved AH 18.12.2012

18.2 Rework of chapter 10 (previously Appendix A) AH 18.12.2012

18.3 Chapter 3.13.1 documented AH 07.01.2013

18.4 CDS-31915: see 6.4.5.1.7
CDS-30732
CDS-22242
CDS-29870
CDS-25678

StR 07.01.2013

18.5 CDS-29583: chap. 4.2: new setting
WinCE.DisableMapPhysicalInVirtualAllocCopyEx

JT 07.01.2013

18.6 CDS-29621
CDS-27403
CDS-29853
CDS-29577
CDS-26286
CDS-18350

WH 10.01.2013

18.7 CDS-29775: see 6.4.5.1.7 StR 14.01.2013

18.8 CDS-22641 (6.4.4.6; attribute “functional”) StR 16.01.2013

18.9 CDS-3001 (7.2.2 ; IoDrvScanModules) StR 16.01.2013

http://jira.3s-software.com/browse/CDS-19331�

CODESYS Control V3 Manual

 3S-Smart Software Solutions GmbH Page 208 of 208
CODESYSControlV3_Manual.doc

te
ch

_d
oc

_e
.d

oc
 /

V
1.

2

Version Description Editor Date

18.10 CDS-29422 (see the meaning of task priority) WH 17.01.2013

18.11 CDS-28218 Added chapter 9.6, describing the licensing
process

IH 18.01.2013

18.12 CDS-23172 Added chapter 4.3.1.4, describing static
memory areas for VxWorks

IH 18.01.2013

18.13 Added chapter 9.3.8

Changed design of some drawings to match the scheme of
the master template of the document.

IH 25.01.2013

18.14 Added setting for multithreading builds to chapter 6.4.5.1.6.

Highlighted all XML snippets from chapter 6.4.5.1

IH 25.01.2013

18.15 CDS-29286: Chapter 3.4 updated AH 29.01.2013

18.16 CDS-21243: Targetsetting CPU for SH-Codegenerator WH 29.01.2013

18.17 CDS-22621: Compile: Task Stack Overflow is not detected WH 29.01.2013

18.18 CDS-29833
CDS-29661
CDS-29563
CDS-26822
CDS-26296

WH 30.01.2013

18.19 CDS-24105
CDS-26255

PB 15.02.2013

19.0 Release after formal review and rework MN 13.03.2013

	1 Introduction
	1.1 Runtime System in the Overall System
	1.2 Mission of the Runtime System

	2 Architecture
	2.1 Overview
	2.2 Technology: ANSI-C and C++
	2.3 Single Source
	2.3.1 Compact runtime
	2.3.1.1 Compact download format

	2.4 Error Codes
	2.5 Object Handles
	2.6 Linkage
	2.7 Component Interface Architecture
	2.7.1 Calling convention
	2.7.2 Export convention
	2.7.3 Import convention
	2.7.4 Check functions
	2.7.5 Summary

	2.8 M4 Mechanism
	2.8.1 Interface description file
	2.8.2 Dependency description file

	2.9 Source Tree of the Runtime System
	2.10 Files on the Target System
	2.10.1 Boot projects
	2.10.2 I/O manager
	2.10.3 User management
	2.10.4 Visualization

	3 Overview of the Kernel Components and Main Functions
	3.1 Start up and Shutdown
	3.1.1 Startup
	3.1.2 Operating mode
	3.1.3 Shutdown

	3.2 Component Manager
	3.3 Application Handling
	3.3.1 Overview
	3.3.2 Application management
	3.3.3 State behaviour (Start/Stop/Error)
	3.3.4 Boot project
	3.3.4.1 Create boot project at download implicitly
	3.3.4.2 Create boot project after online change implicitly
	3.3.4.3 Create boot project on demand
	3.3.4.4 Create boot project offline

	3.3.5 Retain variables
	3.3.6 Debugging
	3.3.7 Download and online change
	3.3.7.1 Download
	3.3.7.2 Online Change

	3.3.8 Events related to application handling
	3.3.9 System variables for controlling critical runtime services
	3.3.10 Accessing project and application information
	3.3.10.1 Project information
	3.3.10.2 Application information

	3.4 Watchdog Handling
	3.4.1 Monitoring

	3.5 IEC Task Management
	3.5.1 Data Format of the task description
	3.5.2 Creating IEC tasks
	3.5.3 Creating an external event task

	3.6 Scheduling
	3.6.1 Single tasking
	3.6.2 Timer scheduler
	3.6.3 Multitasking

	3.7 Task management
	3.8 Configuration (Settings)
	3.8.1 INI file backend
	3.8.2 Embedded Backend

	3.9 Logging
	3.10 Hardware and Operating System Abstraction Layer (Sys-Components)
	3.10.1 Time access (SysTime)
	3.10.2 Serial interface (SysCom)
	3.10.3 Exception handling (SysExcept)
	3.10.4 File access (SysFile)
	3.10.5 File access using flash (SysFileFlash)
	3.10.6 Flash access (SysFlash)
	3.10.7 Directory handling (SysDir)
	3.10.8 Memory access
	3.10.8.1 Heap and static memory (SysMem)
	3.10.8.2 Physical memory access and shared memories (SysShm)

	3.10.9 Dynamic loading module (SysModule)
	3.10.10 Ethernet sockets (SysSocket)
	3.10.11 Debug console outputs (SysOut)
	3.10.12 Message queues (SysMsgQ)
	3.10.13 Interrupt handling
	3.10.14 PCI bus access (SysPCI)
	3.10.15 Device port access (SysPort)
	3.10.16 Timer handling (SysTimer)
	3.10.17 Target information (SysTarget)
	3.10.18 Task handling
	3.10.18.1 Synchronization and semaphores (SysSem)
	3.10.18.2 Operating system events (SysEvent)
	3.10.18.3 Task handling (SysTask)

	3.10.19 Optional system components for target visualization
	3.10.19.1 Window handling (SysWindow)
	3.10.19.2 Basic graphic routines (SysGraphic)

	3.10.20 Process handling
	3.10.20.1 Processes (SysProcess)
	3.10.20.2 Process synchronization (SysSemProcess)

	3.10.21 Direct Ethernet controller access (SysEthernet)

	3.11 Memory Management
	3.12 Events
	3.13 Exception Handling
	3.13.1 Structured exception handling (rts_try / rts_catch)

	3.14 License Check
	3.15 Online User Management

	4 Portings
	4.1 Windows Specific Information
	4.1.1 Windows runtime services
	4.1.1.1 CODESYS Control Win V3 (soft real time)
	4.1.1.2 CODESYS Gateway Service V3
	4.1.1.3 CODESYS Service Control V3
	4.1.1.4 Brand labeling

	4.1.2 CODESYS Control RTE V3 (hard realtime)
	4.1.3 CODESYS integrated runtime systems
	4.1.3.1 CODESYS simulation
	4.1.3.2 CODESYS HMI

	4.2 Windows CE Specific Information
	4.3 VxWorks Specific Information
	4.3.1 Distributed clocks
	4.3.1.1 Timer sources
	4.3.1.2 Performance & Accuracy
	4.3.1.3 Jitter
	4.3.1.4 Static Memory Areas

	4.3.2 Global object pools

	4.4 Linux specific information

	5 Communication
	5.1 Overview
	5.1.1 Usage scenarios

	5.2 General
	5.3 Communication Layers
	5.3.1 Block driver (Layer 2)
	5.3.2 Router (Layer 3)
	5.3.3 Channel management (Layer 4)
	5.3.4 Application services (Layer 7)

	5.4 Network Topology and Addressing
	5.4.1 Topology
	5.4.2 Addressing and routing
	5.4.2.1 Parallel routing

	5.4.3 Address determination
	5.4.4 Address structure
	5.4.4.1 Network addresses
	5.4.4.2 Node addresses
	5.4.4.3 Absolute and relative addresses
	5.4.4.4 Broadcast addresses

	5.5 Router Communication
	5.5.1 Hop count
	5.5.2 Router signaling
	5.5.3 Variable maximum block length for a transmission route
	5.5.4 Multiple router instances

	5.6 Layer 3 Services
	5.7 Gateway and client
	5.8 Implementation Aids
	5.8.1 Implementation of own block driver
	5.8.2 Interface
	5.8.3 Addressing
	5.8.4 General implementation procedure
	5.8.5 Synchronisation

	5.9 Implementation of Own Communication Driver
	5.9.1 Communication driver for the gateway
	5.9.2 Communication driver for the client
	5.9.2.1 Connection parameters
	5.9.2.2 Implementation of BeginConnect

	5.10 Standard block drivers and their network addresses
	5.10.1 Overview
	5.10.2 UDP block driver
	5.10.3 Serial block driver

	5.11 Modules
	5.12 Client API Interfaces
	5.12.1 Channel client (CmpChannelClient)
	5.12.2 Gateway client (GwClient)
	5.12.3 PLCHandler

	6 Device- / I/O Configuration
	6.1 Graphical Configuration
	6.2 Devices
	6.3 Device Descriptions
	6.3.1 Connectors
	6.3.3 I/O mapping

	6.4 Device Description Files
	6.4.1 Defining types
	6.4.1.1 Bitfields
	6.4.1.2 Range types
	6.4.1.3 Array types
	6.4.1.4 Simple structures

	6.4.2 Defining strings for localization
	6.4.3 Defining files and adding icons and images
	6.4.4 Defining the device itself (identification, connectors, driver, parameters)
	6.4.4.1 Device
	6.4.4.2 Device identification
	6.4.4.3 Device info
	6.4.4.4 Driver info
	Adding libraries and function blocks

	6.4.4.5 Defining connectors
	6.4.4.5.1 Slave with 1 connector
	6.4.4.5.2 Master with 2 connectors
	6.4.4.5.3 Multiple parent connectors

	6.4.4.6 Defining parameters and parameter sections
	6.4.4.7 Functional, defining child objects
	6.4.4.8 Compatible Versions

	6.4.5 Target description
	6.4.5.1 Target settings
	6.4.5.1.1 Runtime features
	6.4.5.1.2 Memory layout
	6.4.5.1.2.1 Some Use cases of memory layout settings
	6.4.5.1.2.2 Child applications

	6.4.5.1.3 Online
	6.4.5.1.4 Task configuration
	6.4.5.1.4.1 Application tasks

	6.4.5.1.5 Network variables
	6.4.5.1.6 Code generator
	6.4.5.1.7 Device configuration
	6.4.5.1.8 Library management
	6.4.5.1.8.1 Placeholder Libraries
	6.4.5.1.8.2 Placeholderlib, for replacing 3S-libraries by customer-specific libraries
	6.4.5.1.8.3 Exclude library category

	6.4.5.1.9 Visualization
	6.4.5.1.10 Online Manager
	6.4.5.1.11 Recipe manager
	6.4.5.1.12 Symbolconfiguration
	6.4.5.1.13 Trace
	6.4.5.1.14 Object Type Restrictions

	6.4.6 Custom tags
	6.4.7 Strings
	6.4.8 Types

	6.5 Device administration
	6.6 Save and Restore Changed IO Configuration Parameters

	7 I/O Drivers
	7.1 Concept
	7.2 Main I/O Driver Interfaces
	7.2.2 ICmpIoDrv
	7.2.3 ICmpIoDrvParameter

	7.3 Optional Interfaces
	7.4 I/O Manager
	7.5 Access to the I/O Configuration
	7.6 I/O Drivers in C/C++
	7.7 I/O Drivers in IEC
	7.8 Diagnostic Information
	7.8.1 General diagnostic information bit-field
	7.8.2 Extended diagnostic parameter
	7.8.3 Extended diagnostic acknowledge parameter
	7.8.4 Implementation notes

	7.9 IO Consistency
	7.9.1 Consistency in the IO Driver

	7.10 External CAN Sync
	7.10.1 CAN L2 API
	7.10.2 Timer ISR
	7.10.3 Motion Cycle Time

	7.11 Byte order specific data handling in IO driver
	7.11.1 Bits handling in BYTE/WORD/DWORD
	7.11.2 Helper functions for I/O update
	7.11.3 Representation of bit-fields in IO configuration

	8 Symbolic IEC Variable Access
	8.1 Architecture
	8.2 Database of Symbolic Information
	8.3 Variable Access Interfaces
	8.3.1 Functional interface
	8.3.2 Online interface

	8.4 Data Consistency
	8.5 Behaviour at Download/Online Change
	8.6 Usage on Small Embedded Systems

	9 Customer Adaptations and Expansions
	9.1 Configuration
	9.1.1 Link type of the runtime system
	9.1.2 Choice of components
	9.1.3 Static configuration of components
	9.1.4 Dynamic configuration (CmpSettings)
	9.1.5 Typical configurations of the CODESYS Control WinV3 runtime system
	9.1.5.1 Embedded Runtime System
	9.1.5.2 Timer runtime system
	9.1.5.3 Full runtime system
	9.1.5.4 Gateway runtime system
	9.1.5.5 Visualization runtime systems (target visualization CODESYS HMI)

	9.1.6 Create your own configuration with the RtsConfigurator

	9.2 Implementing own components
	9.2.1 Global include files
	9.2.2 Include files of the components
	9.2.2.1 Interface file
	9.2.2.2 Dependency file

	9.2.3 Generation of include files
	9.2.4 Source code file
	9.2.4.1 General interface
	9.2.4.2 Component specific implementation

	9.3 Implementation Notes
	9.3.1 Error returning
	9.3.2 Memory
	9.3.3 Allocation of IDs
	9.3.3.1 Vendor ID
	9.3.3.2 Component ID
	9.3.3.3 Interface ID
	9.3.3.4 Class ID

	9.3.4 Importing of functions
	9.3.5 Calling of imported functions
	9.3.6 Exporting of functions
	9.3.7 Linkage with the runtime system
	9.3.8 Order of the INIT Hooks

	9.4 Libraries
	9.4.1 Creating a library in CODESYS
	9.4.2 Implementation of external POUs in the runtime system
	9.4.2.1 Declaration in the runtime system
	9.4.2.2 Declaration of functions
	9.4.2.3 Declaration of function blocks
	9.4.2.3.1 Declaration of methods

	9.4.3 Implementation

	9.5 Adaptations to Specific Operating Systems or Processors
	9.6 Licensing
	9.6.1 Derivate based licensing

	10 Coding Guidelines
	10.1 General
	10.2 Naming conventions and identifier
	10.3 Data types
	10.4 Component interfaces and dependencies
	10.5 Startup sequence
	10.6 Alignment
	10.7 Use of special macros

	Appendix A: Migrating from CODESYS Control Version 2 to Version 3
	Bibliography
	Change History

