
 3S-Smart Software Solutions GmbH Page 1 of 74
CODESYSControlV3_uRTS_Manual.doc

CODESYS Control V3 MicroRTS Programmer's Guide

Document Version 2.0

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 2 of 74
CODESYSControlV3_uRTS_Manual.doc

CONTENT

1 INTRODUCTION 5

1.1 About This Manual 5

1.2 Related Documents 5

2 REFERENCE IMPLEMENTATION QUICKSTART GUIDE 6

2.1 What is the CODESYS V3 MicroRTS Reference Implementation? 6

2.2 Supported Features 6

2.3 Hardware and software requirements 6

2.4 Installation 7

2.4.1 Prerequisites 7

2.4.2 Installation Process 7

2.5 Evaluating Cortex-M3 MicroRTS 7

2.5.1 Overview 7

2.5.2 Building the Firmware 8

2.5.3 Connecting to the Target 8

2.5.4 Downloading the Firmware 9

2.5.5 Installing Device Description Files 10

2.5.6 Configuring the CODESYS V3 Gateway 10

2.5.7 Creating a Test Project in CODESYS IDE 10

2.5.7.1 Creating the simplest basic project 10

2.5.7.2 Accessing Hardware in CODESYS Application 13

2.5.8 LPC1768-Stick LED Indication 16

3 CORTEX-M3 MICRORTS STARTER PACKAGE CONTENT 17

3.1 Overview 17

3.2 Supported Targets 17

3.3 Toolchain 17

3.3.1 Build Tools for C Development 17

3.3.2 Drivers for Downloading and Debugging 18

3.4 Source Files 18

3.4.1 Overview 18

3.4.2 Platform Independent Source Files 18

3.4.3 Platform Specific Source Files 23

3.4.3.1 Overview 23

3.4.3.2 NXP-LPC1768 Folder Content 24

3.4.3.3 TI-LM3S9B96_uRTS Folder Content 26

3.5 Build Utilities 28

4 ARCHITECTURE 29

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 3 of 74
CODESYSControlV3_uRTS_Manual.doc

4.1 Overview 29

4.2 MicroRTS Features 29

4.3 Differences Between the MicroRTS and Other Runtime System Profiles 30

4.4 Components Management 30

4.4.1 Component Defined 30

4.4.2 Component Source Code Organization 31

4.4.2.1 Component Source Code 31

4.4.2.2 Root Module Requirements 33

4.4.2.3 Secondary Module Requirements 34

4.4.2.4 Subordinate Modules Requirements 34

4.4.3 Simplified Component Manager 35

4.4.3.1 Overview 35

4.4.3.2 Components List 36

4.4.3.3 Excluding Components Functionality 40

4.5 Runtime Operation 41

4.5.1 Startup Sequence 41

4.5.2 Operating Mode 42

5 IMPLEMENTING THE MICRORTS 43

5.1 Overview 43

5.2 Creating Device Description File 43

5.2.1 Overview 43

5.2.2 Specifying Device Identification and Device Information 44

5.2.3 Specifying Runtime Features 45

5.2.4 Configuring Codegenerator 46

5.2.5 Creating Memory Layout 47

5.2.5.1 Overview 47

5.2.5.2 Defining Code Area(s) 51

5.2.5.3 Defining Data Area(s) 52

5.2.6 Setting-up Tasks 53

5.3 Organizing the MicroRTS Source Tree 54

5.3.1 Source Tree Layout 54

5.3.2 Mandatory Configuration Macros for the MicroRTS Profile 56

5.4 Defining Components 57

5.4.1 Components Source Code Modifications 57

5.4.2 Adding Components to the MicroRTS Build Configuration 60

5.5 Adapting Core System Components 60

5.5.1 Overview 60

5.5.2 Specifying Target Identification 61

5.5.3 Implementing CPU-specific Functions 62

5.5.4 Implementing Memory Management 63

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 4 of 74
CODESYSControlV3_uRTS_Manual.doc

5.5.4.1 Overview 63

5.5.4.2 Defining the Runtime Stack 63

5.5.4.3 Defining the Runtime Free Storage (Heap) 63

5.5.4.4 Defining IEC Application Areas 65

5.5.4.5 Fixed-size Memory Blocks Allocation 67

5.5.5 Implementing System Ticks 68

5.5.6 Implementing Access to a Flash Memory 68

5.5.7 Implementing Exceptions Handling 70

5.6 Adapting Communications 71

5.7 Configuring the Logger 71

5.8 Implementing a Debugging Console 71

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 5 of 74
CODESYSControlV3_uRTS_Manual.doc

1

1.1 About This Manual

Introduction

The CODESYS V3 MicroRTS Programmer’s Guide describes the basic architecture of a special profile
of CODESYS V3 Runtime System (MicroRTS) intended for deploying on programmable logic
controllers (PLC) and embedded devices based on CPUs and microcontrollers with a low memory
budget. This document also contains brief guidelines to adapt MicroRTS to specific target devices.

1.2 Related Documents
It is recommended to refer to the following documents, which cover various aspects of CODESYS V3
OEM development and adaptation:

CODESYS Control V3 Manual – contains the detailed information about CODESYS Control V3 runtime
system (RTS).

CODESYS Control V3 Migration and Adaptation – describes the basic approach to port CODESYS
Control RTS to a bare hardware without an operating system, as well as to a platform with an
unsupported operating system.

Tutorial: Creating own Runtime System Components and I/O Drivers – describes the process of
creating custom runtime components and I/O drivers.

Generating libraries in CODESYS V3 – contains the detailed information on creating external and
internal libraries.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 6 of 74
CODESYSControlV3_uRTS_Manual.doc

2

2.1 What is the CODESYS V3 MicroRTS Reference Implementation?

Reference Implementation Quickstart Guide

The CODESYS V3 MicroRTS reference implementation, further referred to as the Cortex-M3
MicroRTS reference implementation or Cortex-M3 MicroRTS, is an adaptation of CODESYS V3
Runtime System for the NXP LPC1768 Cortex-M3 based microcontroller. Cortex-M3 MicroRTS
supports all the features currently available in the MicroRTS profile of CODESYS V3 Runtime System.

The HITEX LPC1768-Stick evaluation board is used as a target device for demonstrating features
implemented in Cortex-M3 MicroRTS.

The Cortex-M3 MicroRTS Starter Package is delivered with the source code and tools required for
building, downloading and debugging the Cortex-M3 MicroRTS target binary and can be used by an
OEM software developer as a learning tool for evaluating MicroRTS and/or as a starting point for
porting MicroRTS to any other platform for which it is necessary to achieve the smallest possible flash
memory and RAM footprint.

2.2 Supported Features
Cortex-M3 MicroRTS supports the following set of features:

• Downloading an IEC 61131-3 user application created with CODESYS V3 IDE to flash
memory of the target device.

• In-flash execution of the user application.

• Monitoring of the user application variables.

• Writing and forcing values of the user application variables.

• Remote control of the application execution including Start/Stop and Single Cycle.

• Exceptions handling in an IEC code.

• Logging up to 5 log messages.

The current version of Cortex-M3 MicroRTS communicates with CODESYS V3 IDE via a virtual serial
port that is automatically added to the Windows device tree when the LPC1768-Stick is connected to
an USB port of the PC running CODESYS V3 IDE.

Cortex-M3 MicroRTS consumes 15.7 kB of RAM and 87.5 kB of flash memory.

The CODESYS application memory settings specified in the device description file are as follows:

• Code size (in flash memory): up to 64 kB (can be extended to 256 kB and more since the
LPC1768 chip contains 512 kB of flash memory).

• Data size: up to 24 kB.

2.3 Hardware and software requirements
The PC should have the following characteristics:

• Running Windows XP/Vista/7 32/64-bit

• CODESYS V3.5 IDE

• 1 GB of free Hard Drive space

• Free USB Port

The HITEX LPC1768-Stick should be used as a target device.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 7 of 74
CODESYSControlV3_uRTS_Manual.doc

2.4 Installation

2.4.1 Prerequisites
Before installing the Cortex-M3 MicroRTS Starter Package, please install the following software:

1. CODESYS IDE V3.5.1 of greater.

2. CodeSourcery Lite for Cortex-M3. This toolchain can be downloaded at:
https://sourcery.mentor.com/sgpp/lite/arm/portal/release1802 (IA32 Windows Installer). When the
installation is finished, please create the TOOLCHAIN_PATH environment variable that refers to
the CodeSourcery toolchain installation path (by default c:\Program Files
(x86)\CodeSourcery\Sourcery G++ Lite\).

3. Before installation begins, please make sure that the HITEX LPC1768-Stick is not connected to
an USB port of the PC.

2.4.2 Installation Process
1. Run Setup_CODESYSuRTSStarterPackageV3.5SP1.exe (the name may vary depending on the

starter package version). Click Next in the Welcome installation wizard window. The License
Agreement wizard window will be displayed on the screen.

2. Read the terms of the license agreement and click Yes, if you accept them. The Choose
Destination Location wizard window will be shown on the screen.

3. If you wish to change the default installation folder, click Browse in Destination Folder, select
desired folder for installing the starter package and click Next.

4. In the Select Program Folder wizard window, enter the name of the program group which will be
created during installation, then click Next. The Setup Status wizard window will be displayed on
the screen indicating status of the installation process.

5. When the FTDI Bus Driver Updater dialog box appears on the screen, click Next, and then
proceed confirming successful stages of FTDI drivers installation.

6. Click Finish in the InstallShield Wizard Complete window.

2.5 Evaluating Cortex-M3 MicroRTS

2.5.1 Overview
The following basic operations can be performed while evaluating Cortex-M3 MicroRTS:

1. Building the firmware.

2. Connecting to the target device and downloading the firmware.

3. Configuring the CODESYS V3 Gateway.

4. Installing the LPC1768-Stick device description file to the CODESYS device repository.

5. Creating a simple project in CODESYS.

6. Downloading the compiled CODESYS project to the target.

7. Monitoring, writing and forcing variables in the downloaded application.

8. Forcing exceptions to occur in the application.

9. Fetching the target device log entries to the CODESYS IDE device log page.

https://sourcery.mentor.com/sgpp/lite/arm/portal/release1802�

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 8 of 74
CODESYSControlV3_uRTS_Manual.doc

2.5.2 Building the Firmware
The Cortex-M3 MicroRTS Starter Package is supplied with the full sources and tools that are
necessary to build the target firmware. The Cortex-M3 MicroRTS Starter Package installation program
creates a set of shortcuts in the CODESYS V3 uRTS StarterPackage–Tools–Cortex-M3–NXP-
LPC1768 program group allowing to build, download and debug the firmware in the target device.

To build the firmware, just click the Build Firmware shortcut in the CODESYS V3 uRTS
StarterPackage–Tools–Cortex-M3–NXP-LPC1768 program group. The Windows console window
will be displayed on the screen indicating the build process as shown in Figure 1.

If the build process succeeds, the message “Build OK” is displayed at the bottom line of the console
window.

2.5.3 Connecting to the Target
The firmware can be downloaded to the LPC1768-Stick target device by use of the Open On-Chip
Debugger (OpenOCD) and the GNU Project Debugger (GDB). In order to support this process, the
FTDI device driver for supported Cortex-M3 chips is installed during the installation of the Cortex-M3
MicroRTS Starter Package. Before trying to download the firmware, the user has to make sure that the
FTDI device drivers were successfully installed and the Virual COM Port (VCP) device instance was
successfully added to the Windows device tree.

1. Connect the LPC1768-Stick to a free USB port of the PC.

2. Select Start – Run and type
mmc devmgmt.msc

The Device Manager window will be displayed on the screen.

3. Open Ports (COM & LPT) list element in the device tree and make sure that the LPC1768-Stick
COM Port (COMxx) device is available, where xx is a port number that should be used while
configuring the CODESYS V3 Gateway.

4. Close the Device Manager window.

The target and the PC are now ready for downloading the firmware to the target.

Figure 1. Console window during the firmware build process

http://openocd.sourceforge.net/�
http://openocd.sourceforge.net/�
http://sources.redhat.com/gdb/�
http://www.ftdichip.com/�

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 9 of 74
CODESYSControlV3_uRTS_Manual.doc

2.5.4 Downloading the Firmware
If the LPC1768-Stick target device contains the Cortex-M3 MicroRTS firmware, when the target is
connected to an USB port of the PC, the second LED of red color starts blinking with frequency of
either 1 or 4 Hz. The sequence below only applies, if the target is empty – the first LED (closest to the
target USB connector) of green color is lit constantly, and the rest two LEDs are off.

1. Click on Start – All Programs and select CODESYS V3 uRTS StarterPackage–Tools–Cortex-
M3–NXP-LPC1768 – Run OCD Server. The console window shown in Figure 2 will be displayed
on the screen.

Figure 2. OpenOCD console window

2. Click on Start – All Programs and select CODESYS V3 uRTS StarterPackage–Tools–Cortex-
M3–NXP-LPC1768 – Firmware Download. The console window shown in Figure 3 will be
displayed on the screen indicating the process of flashing the target.

Figure 3. Flashing the target with gdb

3. Close the console window shown in Figure 3 and then repeat step 2 to perform flash programming
again.

4. Close the console window and then close the OpenOCD console window.

5. Disconnect the target from an USB port of the PC.

6. Connect the target back to the same USB port of the PC. Make sure that the second LED of red
color is blinking cyclically with frequency of 1 Hz. If it is not, repeat Steps 1–5 until the second
LPC1768-Stick LED starts blinking.

Note: Typically, the sequence described in Steps 1–5 has to be repeated at least two times to re-
flash the target because the LPC1768 chip has a bit different implementation of the chip reset
function than expected by gdb.

At this point the target device is ready to communicate with CODESYS.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 10 of 74
CODESYSControlV3_uRTS_Manual.doc

2.5.5 Installing Device Description Files
The Cortex-M3 MicroRTS Starter Package is supplied with two target description files for CODESYS
V3:

MicroRuntime_LPC1768.devdesc.xml – device description file containing the LPC1768 Cortex-M3 SoC
device description, which is used for creating CODESYS V3 projects for the LPC1768-Stick target.

MicroRuntime_LM3S9B96.devdesc.xml – device description file containing the TI-LM3S9B96 Cortex-
M3 uRTS device description, which is used for creating CODESYS V3 projects for the Stellaris DK-
LM3S9B96 Evaluation Board.

Both files are located in the <INSTALL_FOLDER>\DeviceDescriptions folders, where
<INSTALL_FOLDER> is a root installation folder of the starter package.

These files are installed automatically while installing the Cortex-M3 MicroRTS Starter Package. To
update or re-install the device description in the CODESYS device repository after changing them:

1. Start CODESYS V3 IDE.

2. Select Tools – Install device in the CODESYS V3 IDE main menu.

3. Navigate to the <INSTALL_FOLDER>\DeviceDescriptions folder in the Select Device
Description dialog box, then select either MicroRuntime_LPC1768.devdesc.xml or
MicroRuntime_LM3S9B96.devdesc.xml and click Open. The device description will be installed to
the CODESYS V3 IDE devices repository.

2.5.6 Configuring the CODESYS V3 Gateway
Typically, the Cortex-M3 MicroRTS Starter Package installation program configures the CODESYS V3
Gateway automatically. The steps listed below should to be performed, if it is necessary to configure
the gateway manually:

1. Run Notepad (or any other plain text editor) and open the Gateway.cfg configuration file located
in GatewayPLC sub-folder of the CODESYS IDE installation folder (e.g. C:\Program Files
(x86)\3S CODESYS).

2. Change/add the following entries in/to the [CmpRouter] section:
0.NumSubNets=2
0.SubNet.1.Interface=LPC1768VCP

3. Add the following entries to the [CmpBlkDrvCom] section:

Com.0.Baudrate=115200
Com.0.Port=<Virtual COM Port number, see section 2.5.3>
Com.0.Name=LPC1768VCP

4. Save and close the Gateway.cfg configuration file.

5. Restart the CODESYS Gateway.

CODESYS V3 IDE is now ready to download user projects to the target.

2.5.7 Creating a Test Project in CODESYS IDE

2.5.7.1 Creating the simplest basic project

1. Start CODESYS V3 IDE clicking the CODESYS V3.5 shortcut in the 3S CODESYS – CODESYS
program group and select File – New Project in the CODESYS main menu. The New Project
dialog box will be displayed on the screen as shown in Figure 4.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 11 of 74
CODESYSControlV3_uRTS_Manual.doc

Figure 4. Creating a new project

2. Select Standard project in the Templates pane, choose the project location in the Location field
and type in the name of the project to be created and click OK to close the dialog box. The
Standard Project dialog box will be displayed on the screen as shown in Figure 5 prompting you to
select an implementation language and a target for the project.

3. Select LPC1768 Cortex-M3 SoC (3S-Smart Software Solutions GmbH) as shown in Figure 5 and
click OK to close the dialog box. The new project will be created and displayed in the CODESYS
main window as shown in Figure 6.

Figure 5. Selecting the target

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 12 of 74
CODESYSControlV3_uRTS_Manual.doc

Figure 6. New project in the CODESYS V3 main window

4. Double-click the PLC_PRG (PRG) item in the Devices tree and declare the dwCounter variable of
type DWORD in the variables declaration pane of the Structured Text editor:
VAR
 dwCounter : DWORD := 0;
END_VAR

5. In the POU code pane, type in the expression that increments dwCounter at each cycle of the
PLC_PRG execution as shown in Figure 7.

Figure 7. Simple test program

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 13 of 74
CODESYSControlV3_uRTS_Manual.doc

6. Double-click on Device (LPC1768 Cortex-M3 SoC) in the Devices tree, select Gateway-1 in the
Communication Settings pane and click on Scan network. The uRTS for LPC1768 Cortex-M3
SoC node will be displayed in the network tree as shown in Figure 8.

Figure 8. LPC1768-Stick target node in the network tree

7. Double-click on PLC_PRG (PRG) in the Devices tree, select Online – Login in the CODESYS
main menu then click Yes in the CODESYS dialog box which appears on the screen. The project
will be compiled and downloaded to the target. The second LED of red color will start blinking with
frequency of 4 Hz indicating that the user application exists in the target.

8. Select Debug – Start (or press F5) in the CODESYS main menu to run the project in the target.
The CODESYS main window will look as shown in Figure 9 indicating the project execution and
monitoring changes of the dwCounter variable.

Figure 9. Monitoring the dwCounter variable and project execution

9. Select Online – Logout to disconnect from the target.

2.5.7.2 Accessing Hardware in CODESYS Application
The LPC1768-Stick target has an additional LED connected to a GPIO line as it can be accessed
directly in the user's application written in CODESYS. The instructions below explain how to control
that LED:

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 14 of 74
CODESYSControlV3_uRTS_Manual.doc

1. Start CODESYS and open the project created in section 2.5.7.1.

2. Right-click on the Application node in the Devices tree and select Add Object – Global Variable
List in the context menu. The Add Global Variables List dialog box will be displayed on the
screen.

3. Enter the name GPIOConsts in the Name field for the global variables list to be created and then
click Open. The new global variables list will be displayed in the CODESYS main window as
shown in Figure 10.

Figure 10. Monitoring variables in the demo project

4. Declare the following constants which will be used for accessing the GPIO line connected to the
third LED:

 VAR_GLOBAL
 GPIO_DIR_BASEADDR : __XWORD := 16#2009C000;
 GPIO_SET_BASEADDR : __XWORD := GPIO_DIR_BASEADDR + 16#18;
 GPIO_CLR_BASEADDR : __XWORD := GPIO_DIR_BASEADDR + 16#1C;
 GPIO_GET_BASEADDR : __XWORD := GPIO_DIR_BASEADDR + 16#14;
 END_VAR

5. Right-click on the Application node in the Devices tree and select Add Object – POU in the

context menu. The Add POU dialog box will be displayed on the screen.

6. Enter the name GPIO_Get in the Name field, select Function in the Type group, specify BOOL
as a return type for the function in the Return type field, and select Structured Text (ST) in the
Implementation Language combo-box as shown in Figure 11 and then click Open.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 15 of 74
CODESYSControlV3_uRTS_Manual.doc

Figure 11. Creating the GPIO_Get function

7. Create another function named GPIO_Set with the same return type.

8. Double-click the GPIO_Get element in the Devices tree to open the corresponding function in the
Structured Text (ST) editor. In the declaration area, declare the following formal input parameters
and local variable for the function:
VAR_INPUT
 Port : DWORD;
 Pin : DWORD;
END_VAR

VAR
 pAddr : POINTER TO DWORD;
END_VAR

9. In the ST editor implementation area, enter the following source code for the function:
pAddr := GPIO_GET_BASEADDR + Port * 8;
GPIO_Get := (SHR(pAddr^, Pin) AND 1) <> 0;

10. Double-click the GPIO_Set element in the Devices tree to open the corresponding function in the
ST editor. In the declaration area, declare the following formal input parameters and local variable
for the function:
VAR_INPUT
 Port : DWORD;
 Pin : DWORD;
 State : BOOL;
END_VAR

VAR
 PortBase : __XWORD;
 pAddr : POINTER TO DWORD;
END_VAR

11. In the ST editor implementation area, enter the following source code for the function:

IF State THEN
 PortBase := GPIO_SET_BASEADDR;

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 16 of 74
CODESYSControlV3_uRTS_Manual.doc

ELSE
 PortBase := GPIO_CLR_BASEADDR;
END_IF

pAddr := PortBase + Port * 8;
pAddr^ := SHL(1, Pin);

GPIO_Set := State;

12. Double-click the Library Manager element in the Devices tree, click on Add Library..., and in the

Libraries list of the Add Library dialog box displayed on the screen select the Util library, then
click OK. The Util library will be added to the list of libraries available in the project.

13. Double-click the PLC_PRG element in the Devices tree to open the corresponding IEC program
in the ST editor. Add the following three variables in the declaration area:

// LED command
LedState : BOOL;

// half a period of LED blinking for LedBlinker POU instance
HalfPeriod : TIME := T#250MS;

// BLINK FB instance
LedBlinker : BLINK;

14. In the ST editor implementation area, enter the following source code:

dwCounter := dwCounter + 1;

LedBlinker(ENABLE := TRUE,
 TIMELOW := HalfPeriod,
 TIMEHIGH := HalfPeriod,
 OUT => LedState);

GPIO_Set(0, 25, LedState);

15. Rebuild, download and start the project. The third LED on the target will start blinking with

frequency of 2 Hz.

2.5.8 LPC1768-Stick LED Indication
Three LEDs are used as follows:

• Green (1st, closest to the USB connector): lit continuously after connecting to an USB of the PC
if the FTDI device drivers were successfully installed and corresponding devices were added to
the Windows device tree on the PC.

• Red (2nd):

OFF – no firmware exists on the target;

blinks with frequency of 1 Hz – firmware exists on the target, no user application;

blinks with frequency of 4 Hz – firmware and user application exist on the target.

• Green (3rd) – can be controlled by the user application. See section 2.5.7.2 for details.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 17 of 74
CODESYSControlV3_uRTS_Manual.doc

3

3.1 Overview

Cortex-M3 MicroRTS Starter Package Content

The Cortex-M3 MicroRTS Starter Package is supplied with the following items included to the delivery
set:

• HITEX LPC1768-Stick Hardware

• CD with the Cortex-M3 MicroRTS source code, auxiliary utilities and device description files for
two supported target platforms.

This chapter describes the content of the installation program supplied on the Starter Package CD. All
the files and folders are copied by the installation program to a destination folder that can be selected
on a development PC when the installation starts. These files and folders are described below
relatively to that destination folder.

The structure of the destination folder is as shown in the table below.

Folder/File Description

CODESYSV3 Source code and auxiliary utilities

BuildUtils M4 preprocessor and common M4 definition files for generating the RTS components
interface and dependency header files.

Components Platform-independent source files of the RTS.

Platforms Platform-dependent source files for Cortex-M3

DeviceDescriptions Device description files for the Cortex-M3 MicroRTS reference implementation.

Documentation Documentation files mentioned in section 1.2.

Tools Tools for building and debugging the RTS binaries.

FTDI 32- and 64-bit versions of FTDI drivers.

3.2 Supported Targets
The Cortex-M3 MicroRTS Starter Package is supplied with two target description files for CODESYS
V3:

MicroRuntime_LPC1768.devdesc.xml – device description file containing the LPC1768 Cortex-M3 SoC
device description for creating CODESYS V3 projects for the LPC1768-Stick target.

MicroRuntime_LM3S9B96.devdesc.xml – device description file containing the TI-LM3S9B96 Cortex-
M3 uRTS device description for creating CODESYS V3 projects for the Stellaris DK-LM3S9B96
Evaluation Board.

Both files are located in the DeviceDescriptions folder and installed into the CODESYS V3 devices
repository automatically while installing the Cortex-M3 MicroRTS Starter Package.

3.3 Toolchain

3.3.1 Build Tools for C Development
The CodeSourcery Lite toolchain is the set of C/C++ development tools needed for building binary
executables for Cortex-M3-based CPUs and microcontrollers. The toolchain should be installed before
installing the Cortex-M3 MicroRTS Starter Package. When the CodeSourcery installation is finished,

http://www.ftdichip.com/FTDrivers.htm�
https://sourcery.mentor.com/sgpp/lite/arm/portal/release1802�

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 18 of 74
CODESYSControlV3_uRTS_Manual.doc

please create (or update) the TOOLCHAIN_PATH environment variable referring to the CodeSourcery
installation folder (e.g. c:\Program Files (x86)\CodeSourcery\Sourcery G++ Lite\).

The toolchain GNU C compiler is invoked by the make utility supplied in the toolchain. The make utility
itself is launched from the Windows command shell using MakeAll.bat files located in the target
folders:

CODESYSV3\Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\MakeAll.bat –
command file for building the runtime binary for the LPC1768-Stick target device. The corresponding
make-file is located in the same folder.

CODESYSV3\Platforms\Native\CortexM3\TI-LM3S9B96_uRTS\Projects\CodeSourcery\MakeAll.bat –
command file for building the runtime binary for the Stellaris DK-LM3S9B96 Evaluation Board.

The additional tools and libraries which are not part of the CodeSourcery toolchain are located in the
CODESYSV3\Platforms\Native\CortexM3\Tools\ folder.

3.3.2 Drivers for Downloading and Debugging
The firmware can be downloaded to supported target devices and debugged using the Open On-Chip
Debugger (OpenOCD) and GDB. In order to support downloading and debugging the firmware, the
FTDI device driver for supported Cortex-M3 chips is being installed during installation of the Cortex-M3
MicroRTS Starter Package. The driver installation binaries are located in the Tools\FTDI folder. If you
wish to re-install it manually, please run install.bat in the Tools\FTDI folder.

3.4 Source Files

3.4.1 Overview
The Cortex-M3 MicroRTS Starter Package is delivered with the source code of the CODESYS V3 RTS
components that can be included to the MicroRTS binary executable.

Each platform-independent component sub-folder (Cmpxxx) contains a pair of files with the Dep name
suffix (for example: CmpAppEmbeddedDep.m4 and CmpAppEmbeddedDep.h). The
<ComponentName>Dep.m4 file of each <ComponentName> component contains the m4-
preprocessor declarations used for generating the corresponding <ComponentName>Dep.h header
file. This header file, called a dependency header, consists of the list of other components and their
interface functions, which should be imported to the <ComponentName> component source files.

The Components folder contains pairs of files with the Itf name suffix (for example: CmpAppItf.m4 and
CmpAppItf.h). The <ComponentName>Itf.m4 file of each <ComponentName> component contains the
m4-preprocessor declarations used for generating the corresponding <ComponentName>Itf.h header
file consisting of data types and functions declarations composing the <ComponentName> component
interface.

3.4.2 Platform Independent Source Files
The platform-independent source files located in the CODESYSV3\Components folder are described in
the table below.

Folder/File Description

_OptionalIncludes Common header files used across the RTS source code

 Profiles Header files specific for certain RTS profiles

 uRTS Header files specific for the MicroRTS profile

 CMMicro.h The root header file of the MicroRTS profile. This header file is
automatically included to the components dependency header files.

 Aspects Aspect definitions and declarations specific for the MicroRTS profile.

 uCmpListAsp.h This header file is used in the MicroRTS Component Manager (CMMicro.c)
for defining a list of RTS components and a table of function tables

http://openocd.sourceforge.net/�
http://openocd.sourceforge.net/�
http://sources.redhat.com/gdb/�
http://www.ftdichip.com/�

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 19 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

exported by the components (see uCmpListDecl.h). This file is included to
CMMicro.c multiple times, each time with a different aspect enabled by the
corresponding macro: INCLUDE_CMP_HOOKS_DECLARATIONS,
INCLUDE_CMP_HOOKS_LIST, INCLUDE_CMP_EXTERNALS_LIST.

 uCmpListDecl.h

This header file is used in the MicroRTS Component Manager (CMMicro.c)
for declaring a list of RTS components and a table of function tables
exported by the components.
The components list header file contains the following definitions:

CDS3_DECLARE_COMPONENTS_LIST_BEGIN(uRtsCM3)
 CDS3_ADD_COMPONENT_ENTRY(SysMem)
 /* … other system components */
 CDS3_ADD_COMPONENT_ENTRY(SysInternalLib)
 CDS3_ADD_COMPONENT_ENTRY(CmpHeapPool)
 CDS3_ADD_COMPONENT_ENTRY(CmpMemPool)
 /* … other functional components */
 CDS3_ADD_COMPONENT_ENTRY(CmpSrv)
CDS3_DECLARE_COMPONENTS_LIST_END(uRtsCM3)

The name of the components list header file is supplied to the compiler
used for building the MicroRTS binary executable with the
RTS_CONFIG_FILE macro using the /D or -D option or in the sysdefines.h
target configuration header file:

#define RTS_CONFIG_FILE rtsconfig/uRtsCortexM3.h

The aspects activation in uCmpListDecl.h is performed as follows:

/* The components list defined in RTS_CONFIG_FILE */
/* is processed here using different aspects. */

/* Declare references to the components HookFunction */
/* routines and to the components export tables. */
/* The INCLUDE_CMP_HOOKS_DECLARATIONS aspect */
/* is active here (see uCmpListAsp.h). */

#define INCLUDE_CMP_HOOKS_DECLARATIONS
#include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListAsp.h>
#include ANGLE_BRACKETS(RTS_CONFIG_FILE)
#undef INCLUDE_CMP_HOOKS_DECLARATIONS

/* Define a table of components. */
/* The INCLUDE_CMP_HOOKS_LIST aspect is active here */
/* (see uCmpListAsp.h). */

#define INCLUDE_CMP_HOOKS_LIST
#include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListAsp.h>
#include ANGLE_BRACKETS(RTS_CONFIG_FILE)
#undef INCLUDE_CMP_HOOKS_LIST

/* Define a table of components export tables. */
/* The INCLUDE_CMP_EXTERNALS_LIST aspect is active here */
/* (see uCmpListAsp.h). */
#define INCLUDE_CMP_EXTERNALS_LIST
#include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListAsp.h>
#include ANGLE_BRACKETS(RTS_CONFIG_FILE)
#undef INCLUDE_CMP_EXTERNALS_LIST

CmpAppEmbedded

The IEC Application Manager (embedded version) component folder. The
IEC Application Manager is responsible for controlling an IEC application
downloaded to the target and for the application code and data handling. It
also implements the application specific online services: downloading,
debugging, start/stop, etc.

 CmpAppEmbedded.c The IEC Application Manager root source file.

 CmpAppEmbeddedSrv.c The IEC Application Manager online services implementation file.

 CmpAppEmbedded.h The IEC Application Manager functions declarations shared between the

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 20 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

root source file and the online services implementation file.

CmpAppForce The IEC Application Manager component folder that is responsible for
forcing variables functionality.

 CmpAppForce.c The IEC Application Manager forcing interface implementation.

CmpBinTagUtil The online services input/output streams reader and writer component.
folder.

 CmpBinTagUtil.c The root source file implementing the online services input/output streams
reader and writer.

CmpBlkDrvCom The serial port block driver folder.

 CmpBlkDrvCom.c The serial port block driver root source file.

 CmpBlkDrvCom.h The serial port block driver specific declarations.

CmpBlkDrvUdp The UDP block driver folder.

 CmpBlkDrvUdp.c The UDP block driver root source file.

 CmpBlkDrvUdp.h The UDP block driver specific declarations.

CmpChannelMgrEmbedded

The Channels Manager (embedded version) folder. The Channels
Manager is responsible for sending/receiving messages over selected
channels between RTS and remote clients accessing the RTS online
communications services.

 CmpChannelMgrEmbedded.c The Channels Manager root source file.

CmpChannelServerEmbedded

The Channels Server (embedded version) folder. The Channels Server is
responsible for creating, maintaining and removing communication
channels between RTS and remote clients which access the RTS online
communication services.

 CmpChannelServerEmbedded.c The Channels Server root source file.

CmpChecksum This folder contains implementation of CRC16 and CRC32 algorithms,

 CmpChecksum.c The root source file of the CRC implementation component.

 CmpChecksumCrc16.c The component's source file that implements a CRC16 algorithm.

 CmpChecksumCrc32.c The component's source file that implements a CRC32 algorithm.

CmpCommunicationLib The communication library component folder containing implementation of
the generic network address utility interface.

 CmpCommunicationLib.c The root source file of the communication library component.

CmpDevice The device access component folder. This component is responsible for
initial interactions between a remote client and RTS.

 CmpDevice.c The root source file of the device access component containing
implementation of the device identification getter function.

 CmpDeviceSrv.c The device access online server source file.

CmpHeapPool
The buddy allocator implementation folder. This allocator is recommended
for use in MicroRTS to replace malloc/free implemented in the standard C-
library to reduce code size and to introduce additional flexibility.

 CmpHeapPool.c The buddy allocator component source root file.

CmpIecTask
The IEC Tasks Management component folder. This component
implements an IEC tasks management interface handling state of each
IEC task and providing a factory for creating/deleting task instances.

 CmpIecTask.c The root source file of the IEC Task Management component.

CmpIoDrvIec
The IEC I/O Drivers Management component folder. This component
provides access to I/O drivers written in IEC (CODESYS) from the other
RTS components written in C.

 CmpIoDrvIec.c The IEC I/O Drivers Management component root source file.

CmpIoMgrEmbedded The I/O Manager component folder. The I/O Manager loads I/O drivers,
controls the life-cycle of I/O device objects and provides read/write access

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 21 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

to I/O channels of device objects from an IEC application.

 CmpIoMgrEmbedded.c The I/O Manager root source file.

CmpLogEmbedded
The Logger component folder. The Logger is intended to store text
messages issued by the RTS components for tracing the execution of RTS
and an IEC application.

 CmpLogEmbedded.c The Logger component root source file.

 CmpLogEmbeddedSrv.c The Logger online service implementation file.

CmpMemPool

The Memory Pool Manager (Fixed-size Memory Blocks Manager)
component folder. This component serves as a factory of allocators which
provide memory blocks of fixed size out of static buffers or from the free
storage (i.e. heap). Each allocator instance can also be used as a
sequential container for objects occupying allocated memory blocks.

 CmpMemPool.c The Memory Pool Manager root source file containing two different
implementations of the component interface.

 FixedBlocksAllocator.c

A stand-alone implementation of the fixed-size memory blocks allocator.
The FIXED_BLOCK_ALLOCATOR_SEPARATED macro should be
specified in the build configuration to activate this functionality, if the
RTS_MEMPOOL_VER2 is not specified. If the RTS_MEMPOOL_VER2
macro is specified in the build configuration, this module should be
excluded from the build configuration.

 FixedBlocksAllocator.h The fixed-size memory blocks allocator stand-alone interface header file.

CmpMonitor The Online Monitoring component folder. This component provides remote
monitoring of variables in an IEC application.

 CmpMonitor.c The Online Monitoring component root source file.

CmpNameServiceServer The Name and Address Resolution component folder. This component
resolves the RTS network node name and address.

 CmpNameServiceServer.c The component root source file implementing the naming service interface.

CmpRouterEmbedded
The communication router component folder. The router component is in
charge for transferring incoming packets to either its local network services
server or to another router located on some other network node.

 CmpRouterEmbedded.c The component root source file.

 CmpRouterEmbeddedAddrSrvc.c The router packets dispatcher implementation.

 CmpRouterEmbeddedAddrSrvc.h The packets dispatcher interface header file used by the router.

CmpScheduleEmbedded The IEC tasks embedded scheduler component folder.

 CmpScheduleEmbedded.c The IEC tasks scheduler root source file.

CmpSettingsEmbedded
The RTS settings reader/writer component folder. In a “file-less” RTS
implementation, it only allows to fetch the values defined as static arrays of
(key, value) entries in the RTS sysdefines.h header file.

 CmpSettingsEmbedded.c The component root source file.

 CmpSettingsEmbedded.h
The header file shared between CmpSettingsEmbedded.c and
CmpSettingsEmbeddedSrv.c containing the CmpSettingsEmbeddedSrv
interface functions.

 CmpSettingsEmbeddedSrv.c The settings component online service implementation file.

CmpSrv
The CODESYS network protocol application layer server folder. This
component is responsible for registration and invocation of application
services available in RTS.

 CmpSrv.c The application layer implementation component root source file.

ComponentManager

The MicroRTS Component Manager and utilities folder. The Component
Manager is responsible for the components life-cycle including
components start-up, initialization and cyclical invocation of the
components HookFunction. The Component Manager also resolves
references to external library functions in an IEC code.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 22 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

 CMMicro.c The MicroRTS Component Manager source file.

 CMUtils.c The source file containing various string and number manipulations utility
functions used across the other RTS components.

 CMDep.h The Component Manager dependency header file generated out of
CMDep.m4.

 CMDep.m4
The Component Manager dependency file containing the list of system
components and their interface functions required for the Component
Manager operation.

 CMConvToStr.c

The source file implementing portable formatted string output routines. The
PREFER_PORTABLE_SNPRINTF macro should be defined in the
MicroRTS build configuration to use these routines instead of their
equivalents implemented in the standard C library, which require more
than 30 kB of code memory.

 CMConvToStr.h The portable formatted string output routines declarations.

SysCom This folder contains a platform-independent root source file of the system
component defining an interface to a serial port.

 SysCom.c

The SysCom component root source file containing the SysCom external
library functions (which are disabled in MicroRTS). In order to support the
SysCom interface functions, the corresponding platform-dependent part
should implement these functions in the SysCom secondary module (e.g.
SysComCortexM3.c).

SysCpuHandling

This folder contains a platform-independent root source file of the system
component defining an interface to CPU specific routines
(SysCpuCallIecFuncWithParams, SysCpuGetCallstackEntry,
SysCpuTestAndSetBit, SysCpuAtomicAdd, etc.).

 SysCpuHandling.c

The SysCpuHandling component root source file containing the
SysCpuHandling external library functions and platform-independent
implementation of some CPU specific routines. To support the
SysCpuHandling interface functions, the corresponding platform-
dependent part should be implemented in the SysCpuHandling secondary
module (e.g. SysCpuHandlingCortexM3.c).

SysExcept
The SysExcept component folder. This component is responsible for
handling exceptions, which could occur during the execution of an IEC
application. It is also contains functions for generating software exceptions.

 SysExcept.c

The SysExcept component root source file. In order to support the
SysExcept functionality, the corresponding platform-dependent part should
implement platform-specific exceptions handling in the SysExcept
secondary module (e.g. SysExceptCortexM3.c).

 SysExcept.h The SysExcept component internal header file used between the
component root and secondary source files.

SysFileFlash
The SysFileFlash component folder. This component is responsible for
mapping a set of flash memory regions to a list of file names to be able to
emulate a very simple file system.

 SysFileFlash.c

The SysFileFlash component root source file implementing all necessary
functionality using the SysFlash component interface.
The platform-specific configuration header file (sysdefines.h) should
contain the FILE_MAP macro defining a table that maps a set of file
names to a corresponding set of flash memory regions.

SysFlash
The SysFlash component folder. The SysFlash component provides a set
of interface functions for accessing a flash memory device on a diskless
target.

 SysFlash.c

The SysFlash component root source file. To support the SysFlash
interface functions, the corresponding platform-dependent part should
implement them in the SysFlash secondary module (e.g.
SysFlashCortexM3.c).

SysInt The SysInt component folder. This component provides interface functions
implementing a global lock/unlock mechanism and interrupts handling.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 23 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

 SysInt.c
The SysInt component root source file. To support the SysInt interface
functions, the corresponding platform-dependent part should implement
them in the SysFlash secondary module (e.g. SysIntCortexM3.c).

SysInternalLib

The SysInternalLib component folder. This component provides a generic
implementation of operations on some scalar data types, which are not
fully supported by the CODESYS code generator used for producing an
IEC application binary code.

 SysInternalLibDefault.c

The SysInternalLib component root source file containing a generic
implementation of FPU and long scalar types operations, which are
exported and dynamically linked to an IEC application. This generic
implementation can be overridden in the platform-specific secondary
source file. All operations on 64-bit integer and real data types are
excluded from the MicroRTS profile to reduce memory consumption.

SysMem
The SysMem component folder. The SysMem component provides a set of
interface functions for allocating blocks of memory from special areas: free
storage (heap), data area, code area and retain memory area.

 SysMem.c

The SysMem component root source file. To support the SysMem
interface functions, the corresponding platform-dependent part should
implement some of them in the SysMem secondary module (e.g.
SysMemCortexM3.c). It is recommended not to use malloc/free functions
available in the standard C library. The CmpHeapPool component can be
used for implementation of the SysMemAllocData/SysMemFreeData
routines.

SysSocketEmbedded The SysSocketEmbedded component folder. This component serves as a
minimal implementation of the sockets networking interface.

 SysSocketEmbedded.c

The SysSocketEmbedded component root source file containing a set of
routines and data structures required to have a sockets-based networking
interface relying on target specific functions for sending/receiving packets
via a network adapter. These functions should be implemented in the
SysSocketEmbedded secondary module (e.g.
SysSocketEmbeddedCortexM3.c).

SysTarget The SysTarget component folder. This component is responsible for the
target device identification in CODESYS networks.

 SysTarget.c

The SysTarget component root source file implementing most of the
required functionality. The target specific header file (sysdefines.h) should
contain a set of macros identifying the target:
SYSTARGET_SIGNATUREID, SYSTARGET_DEVICE_TYPE,
SYSTARGET_VENDOR_ID, SYSTARGET_DEVICE_ID,
SYSTARGET_DEVICE_NAME, SYSTARGET_DEVICE_VERSION.
Several functions exposed by the SysTarget interface should be
implemented in the SysTarget secondary module (e.g.
SysTargetCortexM3.c).

SysTime
The SysTime component folder. The SysTime component exposes
functions to gain access to system millisecond-based (and, optionally,
microseconds-based) ticks.

 SysTime.c

The SysTime component root source file containing the CODESYS
SysTime external library functions needed for the runtime operation. The
system tick interface functions should be implemented in the platform-
specific secondary module (e.g. SysTimeCortexM3.c).

3.4.3 Platform Specific Source Files

3.4.3.1 Overview
The platform specific source and other auxiliary files, which implement interfaces exposed by system
components (Sys) are located in the CODESYSV3\Platforms\Native\CortexM3 folder. This folder
contains the following sub-folders:

1. NXP-LPC1768 – MicroRTS system-dependent source and other files specific to the HITEX
LPC1768-Stick target device.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 24 of 74
CODESYSControlV3_uRTS_Manual.doc

2. TI-LM3S9B96_uRTS – MicroRTS system-dependent source and other files specific to the
Stellaris DK-LM3S9B96 evaluation board target device.

3. Tools – auxiliary tools and libraries needed for cross-development.

Each of the two platform-specific folders has the following common structure:

DeviceDescription – this folder contains a device description file for the target device implemented in
the containing platform-specific folder.

Projects – this folder contains sub-folders for various toolchains used for building the RTS binary
executable. Cortex-M3 MicroRTS currently supports only the CodeSourcery toolchain, so the only sub-
folder of the Project folder is CodeSourcery.

rtsconfig – this folder contains two header files: the components list header file and the component
exclusion list header file. The component list header file consists of the table of components, which are
supposed to be available in the runtime system. The component exclusion list header file contains a
set of <COMPONENT_NAME>_NOTIMPLEMENTED macros specifying components, which should be
excluded from the runtime system.

Sys – this folder contains a set of platform-specific component secondary modules, i.e. C modules
related to the system components in which some platform-specific functionality is implemented.

sysdefines.h – contains a set of configuration macros specific for the certain runtime system build
configuration.

sysspecific.h – contains a set of macros, which define the target memory map according to the target
memory configuration specified in the linker configuration file (.ld). This header file also contains some
additional platform-specific macros.

targetdefines.h – can contain an additional set of target specific macros.

The following sub-sections describe the contents of Projects, rtsconfig and Sys folders for each of the
two target devices supported in the Cortex-M3 MicroRTS Starter Package

3.4.3.2 NXP-LPC1768 Folder Content

Folder/File Description

Projects Toolchain specific root folder

 CodeSourcery CodeSourcery toolchain specific folder

 CODESYS.ld The GNU linker configuration file containing descriptions of memory
regions reserved for code and data areas in ROM and SRAM.

 CODESYS.map The map file produced by the GNU linker. This file is replaced with the new
one every time the target binary is rebuilt.

 debug.gdbinit The GNU debugger (gdb) configuration file used for debugging the binary
executable in the target device.

 flash.gdbinit
The GNU debugger (gdb) configuration file used for re-flashing the binary
executable in the target device without touching the flash memory region
containing a CODESYS application.

 flash_all.gdbinit The GNU debugger (gdb) configuration file used for re-flashing the binary
executable in the target device after erasing the entire flash memory.

 GDBDebug.bat
The command file for initiating a gdb debugging session with the target.
The OCDServer.bat should be successfully launched before starting a
debugging session.

 GDBFlash.bat

The command file for re-flashing the binary executable in the target device
without touching the flash memory region containing a CODESYS
application. The OCDServer.bat should be successfully launched before
attempting to start this command file.

 GDBFlash_all.bat
The command file for re-flashing the binary executable in the target device
after erasing the entire flash memory. The OCDServer.bat should be
successfully launched before attempting to start this command file.

 imagestats.bat The command file for creating stat.txt and report.log files. The .NET
Framework 4.0 and the TOOLCHAIN_PATH environment variable referring

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 25 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

to the CodeSourcery toolchain installation folder should be available on a
PC before launching this command file.

 MakeAll.bat
The command file for rebuilding the binary executable. The
TOOLCHAIN_PATH environment variable referring to the CodeSourcery
toolchain installation folder should exist before launching this file.

 Makefile

The make file used for building the RTS binary executable. If you wish to
change the content of the runtime binary executable, please modify this file
accordingly along with modifying the components list and components
exclusion list header files.

 OCDServer.bat

The command file for establishing an OCD connection with a target device
connected to an USB port of a development PC. The OCD connection with
a target is needed every time you need to re-flash the target device or to
initiate a debugging session. Please launch this file prior to starting any of
these command files: GDBDebug.bat, GDBFlash.bat, GDBFlash_all.bat.

 Readme.txt The MicroRTS Features description file.

 report.log
The memory consumption report file generated by imagestats.bat. This file
is created by processing the stat.txt detailed memory map and can be
used for analyzing the ROM and SRAM utilization.

 stat.txt The detailed memory file produced from the binary executable with the
GNU nm.exe utility.

 src LPC1768-Stick target device specific source files folder.

 makedefs Common definitions for the GNU make utility.

 Source LPC1768-Stick target device specific source files root folder.

 Ethernet Not used

 IO LPC17xx GPIO-subsystem related sources folder.

 io_ports.c Not used (specific for the LPC1768-Stick Demo application)

 io_ports.h Not used

 lpc17xx_GPIO.c LPC1768 GPIO driver

 lpc17xx_GPIO.h LPC1768 GPIO driver interface header

 Stick HITEX LPC1768-Stick configuration source files.

 ConfigStick.c LPC1768-Stick peripherals initialization and configuration routines.

 ConfigStick.h LPC1768-Stick peripherals initialization and configuration routines
declarations

 System NXP LPC17xx and HITEX LPC1768-Stick system drivers folder.

 core_cm3.c Cortex-M3 core utilities implementation.

 core_cm3.h Cortex-M3 core utilities interface header.

 cortexm3_fault.S Cortex-M3 hard and soft fault handling entry points.

 cortexm3_macro.S Cortex-M3 core instructions implementations

 defines.h LPC1768-Stick demo software common type definitions.

 interrupt.h Interrupt handlers declarations.

 LED_indi.c LPC1768-Stick LED control utility.

 LED_indi.h LPC1768-Stick LED control interface header file.

 LPC17xx.h Cortex-M3 Core Peripheral Access Layer Header File

 lpc17xx_clkpwr.c LPC17xx clock and power control routines.

 lpc17xx_clkpwr.h LPC17xx clock and power control routines declarations.

 lpc17xx_flsh.c LPC17xx IAP (In-Application-Programming) routines for re-flashing.

 lpc17xx_flsh.h LPC17xx IAP routines declarations.

 lpc17xx_nvic.c LPC17xx NVIC access functions.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 26 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

 lpc17xx_nvic.h LPC17xx NVIC access functions declarations.

 lpc17xx_pinsel.c LPC17xx pins configuration functions.

 lpc17xx_pinsel.h LPC17xx pins configuration functions declarations.

 startup.c Interrupt Vector Table, stack definition, and the sysInit() routine called from
main() and used for initializing the target device.

 system_LPC17xx.c LPC17xx peripheral access source file.

 system_LPC17xx.h Peripheral access declarations.

 UART LPC17xx UARTs access sources folder.

 lpc17xx_libcfg_default.c Not used

 lpc17xx_libcfg_default.h Not used

 lpc17xx_uart.c LPC17xx UARTs generic support library.

 lpc17xx_uart.h LPC17xx UARTs generic support library declarations.

 UART.c LPC1768-Stick UARTs support library.

 UART.h LPC1768-Stick UARTs support library declarations.

 UIR Not used

 USB Not used

rtsconfig LPC1768-Stick target device build configuration folder

 CortexM3_NotImpl.h

This header file contains a set of
<COMPONENT_NAME>_NOTIMPLEMENTED macros, which specify
components dependencies that have to be excluded from the RTS source
files.

 uRtsCortexM3.h

The components list header file containing a set of components to be
included to the build configuration. This file is included to build using the
following definition in the sysdefines.h header file:
#ifndef RTS_CONFIG_FILE
define RTS_CONFIG_FILE rtsconfig/uRtsCortexM3.h
#endif

Sys Components platform-specific secondary modules folder.

 CmpSettingsCortexM3.c Platform specific implementation of target settings.

 MainCortexM3.c The MicroRTS binary executable entry point (main()) is located in this
module.

 SysComCortexM3.c The SysCom component platform-dependent implementation.

 SysCpuHandlingCortexM3.c The SysCpuHandling component platform-dependent implementation.

 SysExceptCortexM3.c The SysExcept component platform-dependent implementation.

 SysFlashCortexM3.c The SysFlash and SysFileFlash components platform-dependent
implementation.

 SysIntCortexM3.c The SysInt component platform-dependent implementation.

 SysSocketEmbeddedCortexM3.c Not used

 SysTargetCortexM3.c The SysTarget component platform-dependent implementation.

 SysTimeCortexM3.c The SysTime component platform-dependent implementation.

3.4.3.3 TI-LM3S9B96_uRTS Folder Content

Folder/File Description

Projects Toolchain specific root folder

 CodeSourcery CodeSourcery toolchain specific folder

 CODESYS.ld The GNU linker configuration file containing descriptions of memory
regions reserved for code and data areas in ROM and SRAM.

 CODESYS.map The map file produced by the GNU linker. This file is replaced with the new

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 27 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

Projects Toolchain specific root folder

one every time the target binary is rebuilt.

 debug.gdbinit The GNU debugger (gdb) configuration file used for debugging the binary
executable in the target device.

 flash.gdbinit
The GNU debugger (gdb) configuration file used for re-flashing the binary
executable in the target device with cleaning the flash memory region
containing a CODESYS application.

 GDBDebug.bat
The command file for initiating a gdb debugging session with the target.
The OCDServer.bat should be successfully launched before starting a
debugging session.

 GDBFlash.bat

The command file for re-flashing the binary executable in the target device
with cleaning the flash memory region containing a CODESYS application.
The OCDServer.bat should be successfully launched before attempting to
start this command file.

 imagestats.bat

The command file for creating stat.txt and report.log files. The .NET
Framework 4.0 and the TOOLCHAIN_PATH environment variable referring
to the CodeSourcery toolchain installation folder should be available on a
PC before launching this command file.

 MakeAll.bat
The command file for rebuilding the binary executable. The
TOOLCHAIN_PATH environment variable referring to the CodeSourcery
toolchain installation folder should exist before launching this file.

 Makefile

The make file used for building the RTS binary executable. If you wish to
change the content of the runtime binary executable, please modify this file
accordingly (along with modifying the components list and components
exclusion list header files).

 OCDServer.bat

The command file for establishing an OCD connection with a target device
connected to an USB port of a development workstation. The OCD
connection with a target is needed every time you need to re-flash the
target device or to initiate a debugging session. Please launch this file prior
to starting any of these command files: GDBDebug.bat, GDBFlash.bat,
GDBFlash_all.bat.

 Readme.txt The MicroRTS Features description file.

 report.log
The memory consumption report file generated by imagestats.bat. This file
is created by processing the stat.txt detailed memory map and can be
used for analyzing the SRAM and flash consumption.

 stat.txt The detailed memory file produced out of the binary executable with the
GNU nm.exe utility.

 src Stellaris DK-LM3S9B96 target device specific source files folder.

 cortexm3_fault.S Cortex-M3 hard and soft fault handling entry points.

 startup.c Interrupt Vector Table, stack definition, and the sysInit() routine called from
main() and used for initializing the target device.

rtsconfig Stellaris DK-LM3S9B96 target device build configuration folder

 CortexM3_NotImpl.h

This header file contains a set of
<COMPONENT_NAME>_NOTIMPLEMENTED macros which specify
components dependencies that have to be excluded from the RTS source
files.

 uRtsCortexM3.h

The components list header file containing a set of components to be
included to the build configuration. This file is included to the build process
using the following definition in the sysdefines.h header file:
#ifndef RTS_CONFIG_FILE
define RTS_CONFIG_FILE rtsconfig/uRtsCortexM3.h
#endif

Sys Components platform-specific secondary modules folder.

 CmpSettingsCortexM3.c Platform specific implementation of target settings.

 MainCortexM3.c The MicroRTS binary executable entry point (main()) is located in this

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 28 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

Projects Toolchain specific root folder

module.

 SysComCortexM3.c Not used.

 SysCpuHandlingCortexM3.c The SysCpuHandling component platform dependent implementation.

 SysExceptCortexM3.c The SysExcept component platform dependent implementation.

 SysFlashCortexM3.c The SysFlash and SysFileFlash components platform dependent
implementation.

 SysIntCortexM3.c The SysInt component platform dependent implementation.

 SysSocketEmbeddedCortexM3.c The SysSocketEmbedded component platform dependent implementation.

 SysTargetCortexM3.c The SysTarget component platform dependent implementation.

 SysTimeCortexM3.c The SysTime component platform dependent implementation.

3.5 Build Utilities
The CODESYSV3\BuildUtils folder contains the m4 preprocessor, command line scripts to invoke it
and common m4 definition files used for transforming the components interface and dependency m4-
files to the corresponding interface and dependency header files. For information about the m4
mechanism, please refer to section 2.8 of the CODESYS Control V3 Manual.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 29 of 74
CODESYSControlV3_uRTS_Manual.doc

4

4.1 Overview

Architecture

MicroRTS is a special profile of the CODESYS V3 runtime system (RTS) intended to be used on IEC
61131-3 programmable embedded devices and PLCs with limited sizes of permanent (ROM) and
volatile (SRAM) memory.

MicroRTS is considered as a special profile because the MicroRTS binary executable is built from the
same source tree that is used for building the full and compact RTS binaries.

This chapter describes the set of features supported by MicroRTS, differences between MicroRTS and
other profiles of the CODESYS V3 RTS, and the MicroRTS architecture.

The MicroRTS architecture is derived from the common CODESYS V3 RTS architecture having in
mind restrictions on memory consumption. For detailed information on the CODESYS V3 RTS
architecture, please refer to section 2 of the CODESYS Control V3 Manual.

4.2 MicroRTS Features
MicroRTS is based on the Compact RTS profile and currently supports the following set of features:

• Downloading an IEC 61131-3 user application created with CODESYS V3 IDE to the
flash memory of a target device.

• In-flash execution of the user application emulating an IEC multi-tasking in a single-
tasking environment.

• Online Monitoring of variables.

• Changing values of variables by writing and forcing.

• Remote control of an IEC application execution including Start/Stop and Single Cycle.

• Exceptions handling in an IEC code.

• Support for logging messages generated by various RTS components.

Some features typically available in the full RTS are not supported:

• Online change of an IEC application.

• System event generation and handling.

• Asynchronous operations execution.

• Debugging an IEC application in CODESYS.

• User management.

• Tracing.

• PlcShell.

• File transfer.

• 64-bit data integer and real types (LWORD, LREAL).

• Most core external libraries are excluded from the runtime system build configuration.

At least two features listed above are considered to be supported in future versions of MicroRTS:

• Online change of an IEC application – if a target device has enough flash memory, and if
re-flashing doesn’t require target interrupts to be disabled for too long.

• Debugging with breakpoints – if a target CPU supports hardware breakpoints.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 30 of 74
CODESYSControlV3_uRTS_Manual.doc

4.3 Differences Between the MicroRTS and Other Runtime System Profiles
The MicroRTS architecture has some differences:

1. The MicroRTS binary executable can only be linked statically.

2. The Component Manager is replaced for the light-weight equivalent providing only a minimal
required set of functionality. This functionality includes controlling the components initialization
and calling to the components HookFunction cyclically only if it is needed.

3. The component base interface is reduced as each component has only a single mandatory
interface function called HookFunction. The ComponentEntry, CreateInstance, DeleteInstance,
ExportFunctions, ImportFunctions and GetVersion are excluded from the components source
code in the MicroRTS profile.

4. The Component Manager doesn't dynamically export any interface functions for the components
composing the MicroRTS. The two Component Manager functions required to MicroRTS
components (CMMicroGetAPI and CMMicroCallHook) are exported statically.

5. External library functions exported by MicroRTS components are linked with the Component
Manager statically. The components implementing some external library functions contain tables
of these functions generated from the components list and from the components interface
definition files (<ComponentName>Itf.m4). These tables are imported to the Component Manager
statically in compile time. When an IEC application is downloaded to a target device, the
CMMicroGetAPI function is used to resolve references to these functions in the downloaded IEC
code.

The next section describes the MicroRTS components layout in greater details.

4.4 Components Management

4.4.1 Component Defined
The CODESYS V3 runtime system is based on the component model in which each component is
represented by an isolated set of source modules written in C. The component’s source modules
implement a piece of functionality and expose the component's interface containing functions which
may be called by other components.

There are two types of components:

1. Functional components – platform-independent components implementing functionality specific
for PLCs and/or control systems. The functional components contain a 'Cmp' prefix in their
names.

2. System components – platform-dependent components, which implement interfaces allowing
functional components to interact with environment of the runtime system (e.g. with an underlying
operating system, specific runtime library, or hardware). The system components contain a 'Sys'
prefix in their names.

The main difference between a functional and a system component is that a system component always
has platform-dependent part of implementation.

There are also core and optional components. The former are the components without which it is
impossible to get the runtime system running. The latter are the components which can be excluded
from the runtime system build configuration.

A component's public interface is represented by a set of functions specific to the component's
functionality and declared in the component's interface description file <ComponentName>Itf.m4. This
file is transformed by the m4 preprocessor to a component's interface header file
<ComponentName>Itf.h. If some component is supposed to be part of MicroRTS, it should also
implement one mandatory private interface function called HookFunction which can only be accessed
by the Component Manager for controlling the component life-cycle.

If some component needs to call interface functions of some other component that means the first
component depends on the second one. The component's dependencies are expressed in the

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 31 of 74
CODESYSControlV3_uRTS_Manual.doc

component's dependency description file <ComponentName>Dep.m4. This file is transformed by the
m4 preprocessor to the component's dependency header file <ComponentName>Dep.h.

For more information about the CODESYS V3 RTS component architecture please refer to sections
2.7 and 2.8 of the CODESYS Control V3 Manual.

4.4.2 Component Source Code Organization

4.4.2.1 Component Source Code
There are three types of source files mentioned in this document:

1. C-modules: source files with the .c extension containing definitions of variables and functions.

2. Header files: source files with the .h extension containing declarations of data types, functions
and macro definitions.

3. Component description files: source files with the .m4 extension containing components interface
descriptions and components dependencies declarations.

The components source code is generally split in two parts. The first one resides in the Components
sub-folder (refer to section 3.4 for more information on folders organization) and contains platform-
independent source files. Each component has two files: <ComponentName>Itf.m4 and
<ComponentName>Itf.h located in the Components folder and its own separate source folder matching
to the component name that contains source files related to this component.

For example, the CmpAppEmbedded component (which is a core functional RTS component that
handles an IEC application in the Compact and MicroRTS profiles) has the following sources structure:

Components Platform-independent sources folder

 CmpAppEmbedded

The IEC Application Manager (embedded version) component folder. The
IEC Application Manager is responsible for controlling the IEC application
downloaded to the target and application code and data handling. It also
implements the application specific online services as downloading,
debugging, start/stop, etc.

 CmpAppEmbedded.c The IEC Application Manager root source file.

 CmpAppEmbeddedSrv.c The IEC Application Manager online services implementation file.

 CmpAppEmbedded.h The IEC Application Manager functions declarations shared among the
root source file and the online services implementation file.

 CmpAppEmbeddedDep.h The IEC Application Manager dependency header file automatically
generated from the corresponding dependency description file.

 CmpAppEmbeddedDep.m4 The IEC Application Manager dependency description file.

 CmpAppItf.m4 The IEC Application Manager interface description file.

 CmpAppItf.h The IEC Application Manager interface header file automatically generated
from the corresponding interface description file.

The second part of component's source code which depends on a specific platform is located in the
corresponding sub-folder of the Platform folder. For example, the SysFlash component, which is a core
system component of the Cortex-M3 MicroRTS, has the following sources structure:

Components Platform-independent sources folder

 SysFlash
The SysFlash component folder. The SysFlash component provides a set
of interface functions for accessing a flash memory device on a diskless
target.

 SysFlash.c
The SysFlash component root source file. To support the SysFlash
interface functions, the platform dependent part should implement them in
the SysFlash secondary module (e.g. SysFlashCortexM3.c).

 SysFlashDep.h The SysFlash component dependency header file automatically generated
from the corresponding dependency description file.

 SysFlashDep.m4 The SysFlash component dependency description file.

 SysFlashItf.m4 The SysFlash component interface description file.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 32 of 74
CODESYSControlV3_uRTS_Manual.doc

 SysFlashItf.h The SysFlash component interface header file automatically generated
from the corresponding interface description file.

Platforms Platform-dependent sources folder

 Native Platform-dependent sources folder for targets without any OS

 CortexM3 Common source folder for Cortex-M3-based CPUs

 NXP-LPC1768 NXP LPC1768 microcontroller sources folder

 Sys Platform-dependent sources of system components

 SysFlashCortexM3.c The SysFlash component platform-dependent secondary source file.

The component's C-module that resides in the component's folder and contains the platform-
independent part of implementation of the component's interface functions including the mandatory
HookFunction and the component's export table is further called a component root source file or a
component root module.

Each system component additionally has at least one platform-dependent C-module, which
implements the component's interface in a platform-specific way. This C-module is further called a
component secondary module. The system components root modules are typically associated with
the secondary modules by the “implemented-in-terms-of” relation. For example, the SysFlash
component root module SysFlash.c contains a call in its HookFunction to the corresponding function
located in the secondary module:
/* The root header file. Should be included before any other header files */
#include "CmpStd.h"

/* The SysFlash component dependency header file */
#include "SysFlashDep.h"

/* This macro may only be used in the components root modules. */
/* It instantiates the component's interface object and the export table */
USE_STMT

/* the SysFlash component mandatory interface function */
static RTS_RESULT CDECL
HookFunction(RTS_UI32 ulHook, RTS_UINTPTR ulParam1, RTS_UINTPTR ulParam2)
{
 RTS_RESULT Result = ERR_OK;

 switch (ulHook)
 {
 /* … other processing of system phases */
 }

 if(Result == ERR_OK)
 {
 /* */
 /* call to the component function located in the secondary module */
 /* which implements the component's functionality in a platform */
 /* specific way. */
 /* */
 return SysFlashOSHookFunction(ulHook, ulParam1, ulParam2);
 }

 return Result;
}

Another example demonstrating the “implemented-in-terms-of” relation is taken from the same
SysFlash component root module (SysFlash.c):

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 33 of 74
CODESYSControlV3_uRTS_Manual.doc

/* This is a platform-independent part of the SysFlashErase interface function */
/* located in the SysFlashErase component root module SysFlash.c. */
RTS_RESULT CDECL SysFlashErase(FlashArea fa, RTS_SIZE ulSize, RTS_SIZE ulOffset)
{
 RTS_RESULT Result;
 RTS_SIZE ulToWork;
 RTS_SIZE ulWorked = 0;

 do
 {
 CMCallExtraCommCycleHook(CM_HOOK_TYPE_FLASH_ACCESS, 0);

 if (ulSize - ulWorked >= s_ulEraseBlockSize)
 ulToWork = s_ulEraseBlockSize;
 else
 ulToWork = ulSize - ulWorked;

 /* call to the component function that actually implements the flash erasing */
 /* functionality and is located in the component's secondary module */
 Result = SysFlashErase_(fa, ulToWork, ulOffset + ulWorked);

 ulWorked += ulToWork;
 if (Result != ERR_OK)
 break;

 } while (ulWorked < ulSize);

 return Result;
}

4.4.2.2 Root Module Requirements
Each component of MicroRTS named CmpName shall have a root module. It is allowed to have one,
and only one, root module.

The root module shall be placed to the component's platform-independent source folder (typically
named CmpName).

The root module, as any other component's C-module, shall contain the following include directives at
the beginning of it:
/* The root header file. Should be included before any other header files */
#include "CmpStd.h"

/* The CmpName component dependency header file */
#include "CmpNameDep.h"

The root module shall contain the USE_STMT macro placed at the beginning of it:
/* This macro may only be used in the components root modules. */
/* It instantiates the component's interface object and the export table */
USE_STMT

The root module shall contain the HookFunction interface function declared as follows:
/* the CmpName component mandatory interface function */
static RTS_RESULT CDECL
HookFunction(RTS_UI32 ulHook, RTS_UINTPTR ulParam1, RTS_UINTPTR ulParam2)
{
 RTS_RESULT result = ERR_OK;

 switch (ulHook)
 {
 /* processing the life-cycle phases of the runtime system */
 }

 return result;
}

The HookFunction function of a system component root module shall contain at least one call to the
hook function CmpNameOSHookFunction defined in the secondary module of this component.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 34 of 74
CODESYSControlV3_uRTS_Manual.doc

4.4.2.3 Secondary Module Requirements
Each system component of MicroRTS named CmpName shall have a secondary module. It is a
common practice to have only a single secondary module in the core runtime system components, but
OEM-specific system components might have any number of secondary modules, if they are manually
hooked to the corresponding root module with a chain of calls.

The secondary module shall be placed to the component's platform-dependent source folder.

The secondary module shall contain the following include directives at the beginning of it:
#include "CmpStd.h"

#ifdef PATHS_RELATIVE
 #include "CmpName/CmpNameDep.h"
#else
 #include "CmpNameDep .h"
#endif

If the secondary module is supposed to be used in the full and/or compact profile of the runtime
system, the secondary module shall contain the USEIMPORT_STMT macro placed at the beginning of
it:
/* This macro may only be used in the components secondary modules. */
USEIMPORT_STMT

The secondary module shall contain the CmpNameOSHookFunction declared as follows:
/* the CmpName system component platform-specific implementation hook */
static RTS_RESULT CDECL
CmpNameOSHookFunction(RTS_UI32 ulHook, RTS_UINTPTR ulParam1, RTS_UINTPTR ulParam2)
{
 RTS_RESULT result = ERR_OK;

 switch (ulHook)
 {
 /* processing life-cycle phases of the runtime system */
 }

 return result;
}

If some component is supposed to be part of MicroRTS profile only, the USEIMPORT_STMT macro
can be omitted since it is expanded to an empty line in the MicroRTS profile

4.4.2.4 Subordinate Modules Requirements
The rest C-modules placed to the component's source folders, either platform-independent or
platforrm-specific, are further called subordinate modules. These C-modules are typically added to the
component's source folders to improve modularity.

Any system component of MicroRTS may have any number of subordinate modules.

If it is required for some component's subordinate module to access functions listed in the
component's dependency description file, the following directives should be placed at the beginning of
it:
#include "CmpStd.h"

#ifdef PATHS_RELATIVE
 #include "CmpName/CmpNameDep.h"
#else
 #include "CmpNameDep .h"
#endif

USEEXTERN_STMT

If some component is supposed to be part of MicroRTS profile only, the USEEXTERN_STMT macro
can be omitted since it is expanded to an empty line in the MicroRTS profile.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 35 of 74
CODESYSControlV3_uRTS_Manual.doc

4.4.3 Simplified Component Manager

4.4.3.1 Overview
The MicroRTS profile uses a special simplified version of the Component Manager that is implemented
in the Components\ComponentManager\CMMicro.c module.

The MicroRTS Component Manager was designed to minimize the number of interactions between the
Component Manager and the MicroRTS components and to reduce the Component Manager code
size.

The MicroRTS Component Manager implements the following functionality:

1. Statically instantiates the table of components to be included to the MicroRTS binary executable.
This table is represented by the implicitly defined s_ComponentList static array of type
CMP_DESCRIPTOR declared in Components_OptionalIncludes\Profiles\uRTS\CMMicro.h. The
array is generated from the components list header file specified by the RTS_CONFIG_FILE
macro in either the system build configuration header file sysdefines.h or directly by the -D or /D
compile switch. The array generation is activated by successive application of the
INCLUDE_CMP_HOOK_DECLARATIONS aspect macro and the
INCLUDE_CMP_HOOKS_LIST aspect macro in
Components_OptionalIncludes\Profiles\uRTS\Aspects\uCmpListDecl.h:
 /* Declare references to the components HookFunction routines and to the */
 /* components export tables. The INCLUDE_CMP_HOOKS_DECLARATIONS aspect */
 /* is active here (see uCmpListAsp.h). */
 # define INCLUDE_CMP_HOOKS_DECLARATIONS
 # include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListAsp.h>
 # include ANGLE_BRACKETS(RTS_CONFIG_FILE)
 # undef INCLUDE_CMP_HOOKS_DECLARATIONS

 /* Define a table of components The INCLUDE_CMP_HOOKS_LIST aspect */
 /* is active here (see uCmpListAsp.h). */
 # define INCLUDE_CMP_HOOKS_LIST
 # include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListAsp.h>
 # include ANGLE_BRACKETS(RTS_CONFIG_FILE)
 # undef INCLUDE_CMP_HOOKS_LIST

2. Statically instantiates the table of pointers to tables of function descriptors, each of which

contains a set of objects referencing to the CODESYS external library functions implemented by
the corresponding components. This table is represented by the s_ComponentExternalsList static
array of type CMP_EXT_FUNCTION_REF declared in Components\CmpStd.h. The array is
generated from the components list header file specified by the RTS_CONFIG_FILE macro in
either the system build configuration header file sysdefines.h or directly by the -D or /D compile
switch. The array generation is activated by application of the
INCLUDE_CMP_EXTERNALS_LIST aspect macro in
Components_OptionalIncludes\Profiles\uRTS\Aspects\uCmpListDecl.h:
 /* Define a table of components export tables. The INCLUDE_CMP_EXTERNALS_LIST */
 /* aspect is active here (see uCmpListAsp.h). */
 # define INCLUDE_CMP_EXTERNALS_LIST
 # include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListAsp.h>
 # include ANGLE_BRACKETS(RTS_CONFIG_FILE)
 # undef INCLUDE_CMP_EXTERNALS_LIST

3. Defines the list of MicroRTS initialization phases which is used for components initialization. This
list is represented by the s_SystemPhases static array of type CMP_PHASE_DESCRIPTOR
declared locally in CMMicro.c:
 /**
 * Hook types table (s_SystemPhases) containing

 * a list of hook types which are used during
 * the system initialization.
 */
 CDS_DECLARE_HOOKS_LIST_BEGIN()
 CDS_INSERT_HOOK(CH_INIT_SYSTEM)
 CDS_INSERT_HOOK(CH_INIT_SYSTEM2)
 CDS_INSERT_HOOK(CH_INIT)
 CDS_INSERT_HOOK(CH_INIT2)
 CDS_INSERT_HOOK(CH_INIT201)
 CDS_INSERT_HOOK(CH_INIT3)

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 36 of 74
CODESYSControlV3_uRTS_Manual.doc

 CDS_INSERT_HOOK(CH_INIT_TASKS)
 CDS_INSERT_HOOK(CH_INIT_COMM)
 CDS_DECLARE_HOOKS_LIST_END()

4. Initializes the runtime system. The CMMicroInit routine walks through the list of phases defined by

the s_SystemPhases static array and call to the HookFunction routine of each component
specified in the components table (s_ComponentList). The CMMicroInit routine, whose name is
redefined to CMInit in Components_OptionalIncludes\Profiles\uRTS\CMMicro.h, is being called
from the main() routine of the MicroRTS binary executable.

5. Provides access to the components HookFunction interface functions from the main() routine of
the MicroRTS binary executable. For example, cyclical execution of some components
HookFunction is implemented as follows:
 /* Platforms\Native\CortexM3\NXP-LPC1768\Sys\MainCortexM3.c */
 int main()
 {
 RTS_RESULT Result;

 sysInit();

 /* CMInit is actually a redefined name for CMMicroInit*/
 Result = CMInit(NULL, s_ComponentList);

 while(!s_bExitLoop)
 {
 /* Cyclical execution of components HookFunction. */
 /* CMCallHook is a redefined name for CMMicroCallHook */

 CMCallHook(CH_COMM_CYCLE, 0, 0, FALSE) ;
 }

 return 0;
 }

6. Provides access to the CODESYS external library functions implemented by the MicroRTS

components. When an IEC application is downloaded to a device running MicroRTS, all
references to external library functions in an IEC code are being dynamically resolved by function
names and signature identifiers. This is done in the AppGetAPI routine of the IEC Application
Manager as follows:
 /* Components\CmpAppEmbedded\CmpAppEmbedded.c */
 static RTS_RESULT CDECL AppGetAPI(char *pszAPIName,

 RTS_VOID_FCTPTR *ppfAPIFunction,
 RTS_UI32 *pulSignatureID,
 RTS_UI32 *pulVersion)
 {
 RTS_RESULT Result;

 #ifndef RTS_COMPACT_MICRO
 /* Compact profile resolution... */
 #else
 Result = CMMicroGetAPI(pszAPIName,
 ppfAPIFunction,
 ((NULL != pulSignatureID) ? *pulSignatureID : 0));
 #endif

 switch (Result)
 {
 /* Result processing... */
 }

 return Result;
 }

4.4.3.2 Components List
The components list containing names of the components that need to be included to the MicroRTS
binary executable is defined in a separate header file with the following layout:
/* Platforms\Native\CortexM3\NXP-LPC1768\rtsconfig\uRtsCortexM3.h */
/* WARNING! Please do not use a single include guard here! */
/* NXP LPC1768-Stick uRTS Components List */

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 37 of 74
CODESYSControlV3_uRTS_Manual.doc

CDS3_DECLARE_COMPONENTS_LIST_BEGIN(uRtsCM3)
 CDS3_ADD_COMPONENT_ENTRY(SysMem)
 CDS3_ADD_COMPONENT_ENTRY(SysTime)
 CDS3_ADD_COMPONENT_ENTRY(SysTarget)
 CDS3_ADD_COMPONENT_ENTRY(SysCpuHandling)
 CDS3_ADD_COMPONENT_ENTRY(SysInt)
 CDS3_ADD_COMPONENT_ENTRY(SysCom)
 CDS3_ADD_COMPONENT_ENTRY(SysFlash)
 CDS3_ADD_COMPONENT_ENTRY(SysFileFlash)
 CDS3_ADD_COMPONENT_ENTRY(SysExcept)
 CDS3_ADD_COMPONENT_ENTRY(SysInternalLib)
 CDS3_ADD_COMPONENT_ENTRY(CmpHeapPool)
 CDS3_ADD_COMPONENT_ENTRY(CmpMemPool)
 CDS3_ADD_COMPONENT_ENTRY(CmpLogEmbedded)
 CDS3_ADD_COMPONENT_ENTRY(CmpAppEmbedded)
 CDS3_ADD_COMPONENT_ENTRY(CmpAppForce)
 CDS3_ADD_COMPONENT_ENTRY(CmpBinTagUtil)
 CDS3_ADD_COMPONENT_ENTRY(CmpBlkDrvCom)
 CDS3_ADD_COMPONENT_ENTRY(CmpChannelMgrEmbedded)
 CDS3_ADD_COMPONENT_ENTRY(CmpChannelServerEmbedded)
 CDS3_ADD_COMPONENT_ENTRY(CmpChecksum)
 CDS3_ADD_COMPONENT_ENTRY(CmpCommunicationLib)
 CDS3_ADD_COMPONENT_ENTRY(CmpDevice)
 CDS3_ADD_COMPONENT_ENTRY(CmpIecTask)
 CDS3_ADD_COMPONENT_ENTRY(CmpIoDrvIec)
 CDS3_ADD_COMPONENT_ENTRY(CmpIoMgrEmbedded)
 CDS3_ADD_COMPONENT_ENTRY(CmpMonitor)
 CDS3_ADD_COMPONENT_ENTRY(CmpNameServiceServer)
 CDS3_ADD_COMPONENT_ENTRY(CmpRouterEmbedded)
 CDS3_ADD_COMPONENT_ENTRY(CmpScheduleEmbedded)
 CDS3_ADD_COMPONENT_ENTRY(CmpSettingsEmbedded)
 CDS3_ADD_COMPONENT_ENTRY(CmpSrv)
CDS3_DECLARE_COMPONENTS_LIST_END(uRtsCM3)

There are two strict requirements for the components list header file:

1. The components list header file should not contain any single include guard directives
preventing this header file from being included to some C module more than once. The
components list header file is included to the CMMicro.c module multiple times intentionally.

2. System components should be placed at the top of the components list.

As stated previously, the components list header file should be specified as the RTS_CONFIG_FILE
macro expansion value using one of the following ways:

1. In sysdefines.h
#ifndef RTS_CONFIG_FILE
define RTS_CONFIG_FILE rtsconfig/uRtsCortexM3.h
#endif

2. As a compiler option:

CFLAGS+=-g -DRTS_CONFIG_FILE=rtsconfig/uRtsCortexM3.h -Dgcc …

The component list header file is transformed in CMMicro.c to the set of components HookFunction
functions forward declarations, to the table of component descriptors and to the table of pointers to
tables of function descriptors, each of which contains a set of objects referencing to the CODESYS
external library functions implemented by the corresponding components. This may seem to be
confusing but uses a simple and powerful aspect-oriented approach:

1. The CMMicro.c module contains the following line:
/**
 * The following aspects are generated with this header file:
 * 1) Table of components (with components hook functions): s_ComponentList
 * 2) Table of components export tables: s_ComponentExternalsList
 */
#include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListDecl.h>

2. The uCmpListDecl.h header file includes the components list header file three time in a raw with

different aspect macros activated before each subsequent inclusion:
/* This macro allows to use the path specified with the par */

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 38 of 74
CODESYSControlV3_uRTS_Manual.doc

/* parameter as part of #include preprocessor directive. */
ifndef ANGLE_BRACKETS
define ___ANGLE_BRACKETS___(par) <par>
define ANGLE_BRACKETS(par) ___ANGLE_BRACKETS___(par)
endif

ifndef RTS_CONFIG_FILE
error RTS_CONFIG_FILE should be specified containing the RTS components list file!
endif

/* The components list defined in RTS_CONFIG_FILE is processed here using */
/* different aspects. */

/* Declare references to the components HookFunction routines and to the */
/* components export tables. The INCLUDE_CMP_HOOKS_DECLARATIONS aspect */
/* is active here (see uCmpListAsp.h). */
define INCLUDE_CMP_HOOKS_DECLARATIONS
include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListAsp.h>
include ANGLE_BRACKETS(RTS_CONFIG_FILE)
undef INCLUDE_CMP_HOOKS_DECLARATIONS

/* Define a table of components The INCLUDE_CMP_HOOKS_LIST aspect */
/* is active here (see uCmpListAsp.h). */
define INCLUDE_CMP_HOOKS_LIST
include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListAsp.h>
include ANGLE_BRACKETS(RTS_CONFIG_FILE)
undef INCLUDE_CMP_HOOKS_LIST

/* Define a table of components export tables. The INCLUDE_CMP_EXTERNALS_LIST */
/* aspect is active here (see uCmpListAsp.h). */
define INCLUDE_CMP_EXTERNALS_LIST
include <_OptionalIncludes/Profiles/uRTS/Aspects/uCmpListAsp.h>
include ANGLE_BRACKETS(RTS_CONFIG_FILE)
undef INCLUDE_CMP_EXTERNALS_LIST

3. The uCmpListAsp.h aspects definition header file expands the

CDS3_DECLARE_COMPONENTS_LIST_BEGIN,
CDS3_DECLARE_COMPONENTS_LIST_END and CDS3_ADD_COMPONENT_ENTRY
macros differently according to the aspect macro currently activated.

4. If the INCLUDE_CMP_HOOKS_DECLARATIONS macro is activated, the
CDS3_DECLARE_COMPONENTS_LIST_BEGIN and
CDS3_DECLARE_COMPONENTS_LIST_END macros are expanded to empty lines, and each
CDS3_ADD_COMPONENT_ENTRY macro is expanded to a pair of forward declarations:
 extern RTS_RESULT CDECL ComponentName_HookFunction(RTS_UI32 ulHook,
 RTS_UINTPTR ulParam1,
 RTS_UINTPTR ulParam2);

 extern const CMP_EXT_FUNCTION_REF ComponentName_ExternalsTable[];

The first forward declaration imports the ComponentName component HookFunction and the
second forward declaration – the ComponentName component table of external library function
descriptors.

5. If the INCLUDE_CMP_HOOKS_LIST macro is activated, the
CDS3_DECLARE_COMPONENTS_LIST_BEGIN macro is expanded to the following definition:
static CMP_DESCRIPTOR s_ComponentList[] =
{

Each CDS3_ADD_COMPONENT_ENTRY is expanded to the corresponding s_ComponentList
array element:
 { ComponentName_HookFunction, 0, ERR_OK },

The CDS3_DECLARE_COMPONENTS_LIST_END macro is expanded to the last element of the
sComponentsList array followed by the array end token:
 { NULL, 0, ERR_OK }
};

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 39 of 74
CODESYSControlV3_uRTS_Manual.doc

As a result, the components list header file listed above is transformed to the following array:
 static CMP_DESCRIPTOR s_ComponentList[] =
 {
 { SysMem_HookFunction, 0, ERR_OK },
 { SysTime_HookFunction, 0, ERR_OK },
 { SysTarget_HookFunction, 0, ERR_OK },
 { SysCpuHandling_HookFunction, 0, ERR_OK },
 { SysInt_HookFunction, 0, ERR_OK },
 { SysCom_HookFunction, 0, ERR_OK },
 { SysFlash_HookFunction, 0, ERR_OK },
 { SysFileFlash_HookFunction, 0, ERR_OK },
 { SysExcept_HookFunction, 0, ERR_OK },
 { SysInternalLib_HookFunction, 0, ERR_OK },
 { CmpHeapPool_HookFunction, 0, ERR_OK },
 { CmpMemPool_HookFunction, 0, ERR_OK },
 { CmpLogEmbedded_HookFunction, 0, ERR_OK },
 { CmpAppEmbedded_HookFunction, 0, ERR_OK },
 { CmpAppForce_HookFunction, 0, ERR_OK },
 { CmpBinTagUtil_HookFunction, 0, ERR_OK },
 { CmpBlkDrvCom_HookFunction, 0, ERR_OK },
 { CmpChannelMgrEmbedded_HookFunction, 0, ERR_OK },
 { CmpChannelServerEmbedded_HookFunction, 0, ERR_OK },
 { CmpAppEmbedded_HookFunction, 0, ERR_OK },
 { CmpChecksum_HookFunction, 0, ERR_OK },
 { CmpCommunicationLib_HookFunction, 0, ERR_OK },
 { CmpDevice_HookFunction, 0, ERR_OK },
 { CmpIecTask_HookFunction, 0, ERR_OK },
 { CmpIoDrvIec_HookFunction, 0, ERR_OK },
 { CmpIoMgrEmbedded_HookFunction, 0, ERR_OK },
 { CmpMonitor_HookFunction, 0, ERR_OK },
 { CmpNameServiceServer_HookFunction, 0, ERR_OK },
 { CmpRouterEmbedded_HookFunction, 0, ERR_OK },
 { CmpScheduleEmbedded_HookFunction, 0, ERR_OK },
 { CmpSettingsEmbedded_HookFunction, 0, ERR_OK },
 { CmpSrv_HookFunction, 0, ERR_OK },
 { NULL, 0, ERR_OK }
 };

6. If the INCLUDE_CMP_EXTERNALS_LIST macro is activated, the

CDS3_DECLARE_COMPONENTS_LIST_BEGIN macro is expanded to the following definition:
static const CMP_EXT_FUNCTION_REF* s_ComponentExternalsList[] =
{

Each CDS3_ADD_COMPONENT_ENTRY is expanded to the corresponding
s_ComponentExternalsList array element:
 ComponentName_ExternalsTable,

The CDS3_DECLARE_COMPONENTS_LIST_END macro is expanded to the last element of the
s_ComponentExternalsList array followed by the array end token:
 NULL
};

As a result, the components list header file listed above is transformed to the following array:

 static const CMP_EXT_FUNCTION_REF* s_ComponentExternalsList[] =
 {
 SysMem_ExternalsTable,
 SysTime_ExternalsTable,
 SysTarget_ExternalsTable,
 SysCpuHandling_ExternalsTable,
 SysInt_ExternalsTable,
 SysCom_ExternalsTable,
 SysFlash_ExternalsTable,
 SysFileFlash_ExternalsTable,
 SysExcept_ExternalsTable,
 SysInternalLib_ExternalsTable,
 CmpHeapPool_ExternalsTable,
 CmpMemPool_ExternalsTable,
 CmpLogEmbedded_ExternalsTable,

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 40 of 74
CODESYSControlV3_uRTS_Manual.doc

 CmpAppEmbedded_ExternalsTable,
 CmpAppForce_ExternalsTable,
 CmpBinTagUtil_ExternalsTable,
 CmpBlkDrvCom_ExternalsTable,
 CmpChannelMgrEmbedded_ExternalsTable,
 CmpChannelServerEmbedded_ExternalsTable,
 CmpAppEmbedded_ExternalsTable,
 CmpChecksum_ExternalsTable,
 CmpCommunicationLib_ExternalsTable,
 CmpDevice_ExternalsTable,
 CmpIecTask_ExternalsTable,
 CmpIoDrvIec_ExternalsTable,
 CmpIoMgrEmbedded_ExternalsTable,
 CmpMonitor_ExternalsTable,
 CmpNameServiceServer_ExternalsTable,
 CmpRouterEmbedded_ExternalsTable,
 CmpScheduleEmbedded_ExternalsTable,
 CmpSettingsEmbedded_ExternalsTable,
 CmpSrv_ExternalsTable,
 NULL
 };

The ComponentName_HookFunction routines and ComponentName_ExternalsTable objects are
defined in the components root modules implicitly by the following lines:
/* The root header file. Should be included before any other header files */
#include "CmpStd.h"

/* The ComponentName component dependency header file */
#include "ComponentNameDep.h"

/* This macro may only be used in the components root modules. */
/* It instantiates the component's interface object and the export table */
USE_STMT

The ComponentName_HookFunction routine is a wrapper generated by m4 preprocessor in the
ComponentName component's root module. This wrapper just calls the private HookFunction routine
located in that root module.

4.4.3.3 Excluding Components Functionality
Some components that are not included to the components list can still remain to be referenced from
the components composing the runtime system. This may produce some dead-code in the MicroRTS
binary image, and this code sometimes consumes a decent amount of ROM space.

To explicitly exclude the code that refers to interface functions of some unwanted components, an
additional header file should be created and included to sysdefines.h of specific build configuration.
This header file should contain a set of COMPONENTNAME_NOTIMPLEMENTED macros. The
example below was taken from the Cortex-M3 MicroRTS reference implementation for NXP LPC1768:
#ifndef _CORTEXM3_NOTIMPL_H_
#define _CORTEXM3_NOTIMPL_H_

#define CMPMONITOR2_NOTIMPLEMENTED
#define CMPAPPBP_NOTIMPLEMENTED
#define CMPEVENTMGR_NOTIMPLEMENTED
#define CMPASYNCMGR_NOTIMPLEMENTED
#define CMPIODRVDPV1C1MASTER_NOTIMPLEMENTED
#define CMPIODRVDPV1C2MASTER_NOTIMPLEMENTED
#define CMPIODRVPARAMETER2_NOTIMPLEMENTED
#define CMPIODRVPARAMETER_NOTIMPLEMENTED
#define CMPIODRVPROFINET_NOTIMPLEMENTED
#define CMPLOGBACKEND_NOTIMPLEMENTED
#define CMPSIL2_NOTIMPLEMENTED
#define CMPTRACEMGR_NOTIMPLEMENTED
#define CMPMEMGC_NOTIMPLEMENTED
#define CMPUSERMGR_NOTIMPLEMENTED
#define SYSOUT_NOTIMPLEMENTED
#define SYSSEM_NOTIMPLEMENTED
#define SYSSHM_NOTIMPLEMENTED
#define SYSTASK_NOTIMPLEMENTED
#define SYSTIMER_NOTIMPLEMENTED
#define SYSTIMERTC_NOTIMPLEMENTED

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 41 of 74
CODESYSControlV3_uRTS_Manual.doc

#endif /* _CORTEXM3_NOTIMPL_H_*/

This header file should be included to the sysdefines.h header file for specific build configuration.

4.5 Runtime Operation

4.5.1 Startup Sequence
This section describes the Cortex-M3 MicroRTS startup sequence that is performed on the HITEX
LPC1768-Stick target device.

1. After power-up, the reset interrupt service routine ResetISR located in
Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\src\Source\System\startup.c
is called. This routine initializes data segments, and control is passed to the binary executable
entry point main() that resides in Platforms\Native\CortexM3\NXP-LPC1768\Sys\MainCortexM3.c.
Subsequent operation of the runtime system is performed on the main() routine execution
context.

2. The main() routine shown below calls to the sysInit routine (located in startup.c) to initialize
integrated peripherals of the target device.
 /* Platforms\Native\CortexM3\NXP-LPC1768\Sys\MainCortexM3.c */
 int main()
 {
 RTS_RESULT Result;

 /* Peripherals initialization */
 sysInit();

 /* CMInit is actually a redefined name for CMMicroInit */
 /* The second parameter is not used here. */
 Result = CMInit(NULL, s_ComponentList);

 while(!s_bExitLoop)
 {
 /* Cyclical execution of components HookFunction. */
 /* CMCallHook is a redefined name for CMMicroCallHook */

 CMCallHook(CH_COMM_CYCLE, 0, 0, FALSE) ;
 }

 return 0;
 }

3. The CMMicroInit routine (this name is redefined to CMInit) is being called from the main routine.

At this point the MicroRTS Component Manager performs initialization of CODESYS runtime
system – the CMMicroInit routine walks through the list of MicroRTS initialization phases and
calls to the CMMicroCallHook routine passing the phase identifier as the first parameter as
follows:

static RTS_UI32 s_ulLastCommCycleHookCall = 0;

/**
 * Hook types table (s_SystemPhases) containing
 * a list of hook types which are used during
 * the system initialization.
 */
CDS_DECLARE_HOOKS_LIST_BEGIN()
 CDS_INSERT_HOOK(CH_INIT_SYSTEM)
 CDS_INSERT_HOOK(CH_INIT_SYSTEM2)
 CDS_INSERT_HOOK(CH_INIT)
 CDS_INSERT_HOOK(CH_INIT2)
 CDS_INSERT_HOOK(CH_INIT201)
 CDS_INSERT_HOOK(CH_INIT3)
 CDS_INSERT_HOOK(CH_INIT_TASKS)
 CDS_INSERT_HOOK(CH_INIT_COMM)
CDS_DECLARE_HOOKS_LIST_END()

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 42 of 74
CODESYSControlV3_uRTS_Manual.doc

RTS_RESULT CDECL CMMicroInit(char *pszSettingsFile)
{
 int iPhase;
 RTS_RESULT Result = ERR_OK;

 /* Walk over the list of phases and call to the HookFunction routine */
 /* in each component during the system initialization */

 for (iPhase = 0; iPhase < CDS_HOOKS_LIST_SIZE(); ++iPhase)
 {
 Result = CMMicroCallHook(CDS_HOOK_LIST_ENTRY_ID(iPhase), 0, 0);

 if (CH_INIT_SYSTEM2 == CDS_HOOK_LIST_ENTRY_ID(iPhase))
 {
 /* after CH_INIT_SYSTEM2 */
 s_ulLastCommCycleHookCall = CAL_SysTimeGetMs();
 }
 }
 return Result;
}

4. The CMMicroCallHook routine walks through the list of components, checks if the previous call to
the currently selected component’s HookFunction succeeded, and if it did – calls to this
HookFunction. The call result is stored in the component descriptor of each component.

5. When the CMMicroInit routine finishes, the main() routine starts calling the CMMicroCallHook
routine cyclically passing the CH_COMM_CYCLE phase identifier as a first parameter –
MicroRTS is now in the operating mode.

4.5.2 Operating Mode
In the operating mode, the main routine calls the CMMicroCallHook cyclically with the
CH_COMM_CYCLE phase identifier passed as a first parameter. The CMMicroCallHook walks
through the list of component descriptors and checks whether the previous call to CMMicroCallHook
succeeded, i.e. the ERR_OK error code was returned. If the previous call failed or if the component
requested the Component Manager to stop calling its HookFunction, the CMMicroCallHook skips this
component.

If some components don't require any activity to be organized by cyclic invocation of their
HookFunction, they can return the ERR_NO_COMM_CYCLE error code, which is stored in the
corresponding component descriptors, and the CMMicroCallHook will no longer call their
HookFunction:
/* Components\SysMem\SysMem.c */
static RTS_RESULT CDECL HookFunction(RTS_UI32 ulHook, RTS_UINTPTR ulParam1, RTS_UINTPTR ulParam2)
{
 RTS_RESULT Res = ERR_OK;

 switch (ulHook)
 {
 /* ... */

 /* this error code prevents HookFunction from being called cyclically */
 case CH_COMM_CYCLE:
 return ERR_NO_COMM_CYCLE;

 default:
 break;
 }

 if(Res == ERR_OK)
 return SysMemOSHookFunction(ulHook, ulParam1, ulParam2);

 return Res;
}

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 43 of 74
CODESYSControlV3_uRTS_Manual.doc

5

5.1 Overview

Implementing the MicroRTS

This chapter describes the CODESYS V3 runtime system adaptation process specific for the
MicroRTS profile. For more information about the CODESYS V3 adaptation, please refer to the
CODESYS Control V3 Manual and the CODESYS Control V3 Migration and Adaptation.

The adaptation process consists of the following steps:

1. Creating a device description file – the device description file contains the device and vendor
identification information, specific runtime features and CODESYS V3 compiler options, memory
layout of the target device, the list of libraries associated with the device and other options.

2. Organizing the source code – the MicroRTS source tree has to be structured as it would be easy
to build, download and debug the binary executable. The other things to have in mind while
organizing the source tree are to provide the possibility to update sources to the latest version
released by 3S and to make room for creating other adaptations in future.

3. Defining the components list – this step is needed to specify the list of components which are
planned to be part of MicroRTS on a specific target.

4. Adapting specific system components – typically, the platform-independent components can be
left unchanged during adaptation – the only thing that has to be done is to configure some of
them by defining a set of configuration macros in the sysdefines.h header file.

Some of the system components should be modified to implement the corresponding interactions
between MicroRTS and its environment on a target device: SysTarget, SysCpuHandling,
SysTime, SysFlash, SysMem, SysExcept and, depending on the type of block driver chosen for
comminication between CODESYS IDE and a target device, SysCom or SysSocketEmbedded.

5. Building and debugging the MicroRTS – this step depends on the toolchain chosen for building
the MicroRTS binary executable.

5.2 Creating Device Description File

5.2.1 Overview
The device description file contains the device and vendor identification information, specific runtime
features and CODESYS V3 compiler options, memory layout of a target device, the list of libraries
associated with a device and other options used by CODESYS V3 IDE to create, compile and
download user applications written in IEC 61131-3 programming languages to a target device.

The device description file is an XML file with the .devdesc.xml extension. For more information on the
device description file content and format, please refer to section 6.4 of the CODESYS Control V3
Manual.

This sub-section contains only brief guidelines on creating the device description file based on
templates supplied with the Cortex-M3 MicroRTS Starter Package.

There are at least two device description files in the DeviceDescriptions folder that resides in the
starter package installation folder: MicroRuntime_LPC1768.devdesc.xml and
MicroRuntime_LM3S9B96.devdesc.xml. The following explanation is based on
MicroRuntime_LPC1768.devdesc.xml content.

There are several configuration nodes and sections denoted by the corresponding xml tags, which
should be modified while working on the new device description file that is based on
MicroRuntime_LPC1768.devdesc.xml:

Node/Section Description

DeviceIdentification Device type, identifier and version

DeviceInfo Device readable name and description, vendor name.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 44 of 74
CODESYSControlV3_uRTS_Manual.doc

Node/Section Description

ExtendedSettings Device extended settings

 TargetSettings

 runtime_features Runtime features supported by a target device

 codegenerator Instruction set selection and compiler options

 memory-layout Target device memory layout

 taskconfiguration IEC application tasks options

For more information about I/O configuration, see chapter 6 of the CODESYS V3 Control Manual.

5.2.2 Specifying Device Identification and Device Information
The following two sections of a device description file should contain device identification parameters
and human-readable device and vendos names:
<DeviceDescription>
 <Device>
 <DeviceIdentification>
 <Type>4096</Type>
 <Id>0000 8013</Id>
 <Version>3.5.0.0</Version>
 </DeviceIdentification>
 <DeviceInfo>
 <Name name="local:typename">LPC1768 Cortex-M3 SoC</Name>
 <Description name="local:typedescription">A 3S Target for NXP LPC1768</Description>
 <Vendor name="local:3S">3S - Smart Software Solutions GmbH</Vendor>
 <OrderNumber>???</OrderNumber>
 </DeviceInfo>
 …
 </Device>
</DeviceDescription>

The DeviceIdentification – Type node value specifies a device type. The value 4096 denotes the
CODESYS-programmable device type, i.e. a device that can be used as a target for downloading and
executing applications created in CODESYS V3. The value that is set for this node should also be
defined in the sysdefines.h header file (or as a compiler option -D or /D) in the runtime system build
configuration:
/* Platforms\Native\CortexM3\NXP-LPC1768\sysdefines.h */

#ifndef SYSTARGET_DEVICE_TYPE
define SYSTARGET_DEVICE_TYPE SYSTARGET_TYPE_PROGRAMMABLE
#endif

The DeviceIdentification – Id node contains a unique device type identifier provided by 3S. The first
word of the Id node value (0000 in the example shown above) is a manufacturer (or vendor) identifier
assigned by 3S to each OEM-customer. The second word (8013 in the example) is a specific target
device identifier. An OEM-customer is typically provided with both parts of Id within shipment of the
starter or runtime development package. The value that is set for this node should also be defined in
the sysdefines.h header file (or as a compiler option -D or /D) in the runtime system build configuration:
/* Platforms\Native\CortexM3\NXP-LPC1768\sysdefines.h */

#ifndef SYSTARGET_VENDOR_ID
define SYSTARGET_VENDOR_ID RTS_VENDORID_3S
#endif

#ifndef SYSTARGET_DEVICE_ID
define SYSTARGET_DEVICE_ID 0x8013
#endif

The DeviceIdentification – Version node contains the version number of the device description file for a
specific device. If the DeviceIdentification – Type value is greater than or equal to 4096, the version

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 45 of 74
CODESYSControlV3_uRTS_Manual.doc

number should be specified exactly as it is shown above: n.n.n.n. This node value should also be
specified in the sysdefines.h header file:
/* Platforms\Native\CortexM3\NXP-LPC1768\sysdefines.h */

#ifndef SYSTARGET_DEVICE_VERSION
define SYSTARGET_DEVICE_VERSION 0x03050000
#endif

The DeviceInfo – Name node contains a string value that will appear in the Device combo-box of the
CODESYS Standard Project dialog box, which is displayed on the screen when the new CODESYS
project is being created. This string value is also displayed in the CODESYS project device tree.

The DeviceInfo – Description node contains a description of the target device.

The DeviceInfo – Vendor name value contains a manufacturer name that is displayed along with the
device name in the Device combo-box of the CODESYS Standard Project dialog box.

The device name and the vendor name have to be specified in the sysdefines.h header file:
/* Platforms\Native\CortexM3\NXP-LPC1768\sysdefines.h */

#ifndef SYSTARGET_DEVICE_NAME
define SYSTARGET_DEVICE_NAME "LPC1768 Cortex-M3 SoC"
#endif

#ifndef SYSTARGET_VENDOR_NAME
define SYSTARGET_VENDOR_NAME "3S-Smart Software Solutions GmbH"
#endif

The DeviceInfo – OrderNumber node may contain a manufacturer specific order number for the device
described with this device configuration file.

5.2.3 Specifying Runtime Features
The set of features supported by CODESYS V3 IDE while communicating with the runtime system on a
target device is specified in the Device – ExtendedSettings – TargetSettings – runtime_features
section.
<DeviceDescription>
 <Device>
 <ExtendedSettings>
 <ts:TargetSettings xmlns:ts="http://www.3s-software.com/schemas/TargetSettings-0.1.xsd">
 <ts:section name="runtime_features">
 <ts:setting name="compact_download" type="boolean" access="visible">
 <ts:value>1</ts:value>
 </ts:setting>
 other runtime features…
 </ts:section>
 other sections…
 </ts:TargetSettings>
 </ExtendedSettings>
 </Device>
</DeviceDescription>

There are several options in this section that have to be carefully set for devices which are planned to
be used with the MicroRTS profile:

Runtime Feature Value Comment

only_explicit_features_supported 1
This option limits the CODESYS functionality as the only
set of features (menu commands) explicitly specified
below are enabled.

compact_download 1 Enables the compact binary format generated by
CODESYS for downloading to the target.

max_number_of_apps 1 Limits the number of applications to 1

fixed_app_name Application Specifies the application name.

breakpoints_supported 0 Disables remote debugging.

http://www.3s-software.com/schemas/TargetSettings-0.1.xsd�

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 46 of 74
CODESYSControlV3_uRTS_Manual.doc

Runtime Feature Value Comment

cycle_control_in_iec 1 The task function block is always called, regardless of the
application status.

cycle_control_version_2 1 The call to __sys__rts__cycle__2() is generated in the
application code instead of __sys__rts__cycle().

boot_application_supported 1 The bootable application is always created.

write_variables_supported 1 Enables support for writing variables when CODESYS
IDE is connected to the target device.

connect_device_supported 1 Enables connection between CODESYS IDE and the
target device.

core_application_handling_supported 1
Login, Logout, Start, Stop, Single Cycle and Reset
command are enabled in CODESYS IDE during remote
connection with the target device.

force_variables_supported 1 Enables support for forcing values for variables when
CODESYS IDE is connected to the target device.

For more information about the runtime features configuration, please refer to section 6.4.5.1.1 of the
CODESYS Control V3 Manual.

The max_number_of_apps runtime option should also be specified in the sysdefines.h header file of
the MicroRTS build configuration:
/* Platforms\Native\CortexM3\NXP-LPC1768\sysdefines.h */

#define APPL_NUM_OF_STATIC_APPLS 1

The fixed name of a single IEC application should be set as a runtime parameter of the IEC Application
Manager component and the SysFileFlash component:
/* Platforms\Native\CortexM3\NXP-LPC1768\sysdefines.h */

#define SETTG_ENTRIES_STRING \
 {"CmpRouter", "0.MainNet", "MyCom"}, \
 {"CmpBlkDrvCom", "Com.0.Name", "MyCom"}, \
 {"CmpAppEmbedded", "Application.1", "application"}, \
 {0, 0, 0}

#define FILE1_SIZE 0x10000

#define FILE_MAP FILE_DESC m_FileSystem[] = \
{ \
 /* Name Offset MaxSize read index write index */ \
 {"Application.app", 0x0, FILE1_SIZE, 0xFFFFFFFF, 0xFFFFFFFF}, \
};

5.2.4 Configuring Codegenerator
The Device – ExtendedSettings – TargetSettings – codegenerator section is used for selecting and
configuring the CODESYS V3 IDE IEC 61131-3 compiler backend.
<DeviceDescription>
 <Device>
 <ExtendedSettings>
 <ts:TargetSettings xmlns:ts="http://www.3s-software.com/schemas/TargetSettings-0.1.xsd">
 <ts:section name="codegenerator">
 <ts:setting name="CPU" type="codegenerators" access="edit">
 <ts:value>ARM Cortex-M3</ts:value>
 </ts:setting>
 other code generator options…
 </ts:section>
 other sections…
 </ts:TargetSettings>
 </ExtendedSettings>
 </Device>
</DeviceDescription>

http://www.3s-software.com/schemas/TargetSettings-0.1.xsd�

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 47 of 74
CODESYSControlV3_uRTS_Manual.doc

Some of the options in this section have to be carefully set for devices which are planned to be running
MicroRTS:

Compiler Option Value Comment

Floating Point Unit 0 Tells the code generator that the target CPU doesn't have
a hardware unit implementing floating point operations.

lreal-data-type 0

Disables support for the LREAL data type. It is important
to note that the code size will be increased dramatically, if
this option is set to 1. In this case, the
SYSINTERNAL_DISABLE_64BIT macro has to be
removed from the sysdefines.h header file of the
MicroRTS build configuration leading to increase of the
runtime system code size by almost 30%.

lreal-as-real 1 All occurences of type LREAL in IEC applications will be
implicitly converted to a REAL.

There are two code generator-related macros that should be defined in the sysdefines.h header file of
the MicroRTS build configuration:
#define SYSINTERNAL_DISABLE_64BIT
#define SYSINTERNAL_DISABLE_MATH

For more information about the rest code generator options, please refer to section 6.4.5.1.6 of the
CODESYS Control V3 Manual.

5.2.5 Creating Memory Layout

5.2.5.1 Overview
The Device – ExtendedSettings – TargetSettings – memory-layout and areas sections are used for
defining and configuring memory areas that will be used by the CODESYS V3 IDE compiler for placing
an IEC application code and for locating global, input, output, retain and other kinds of variables in
memory of a target device.
<DeviceDescription>
 <Device>
 <ExtendedSettings>
 <ts:TargetSettings xmlns:ts="http://www.3s-software.com/schemas/TargetSettings-0.1.xsd">
 <ts:section name="memory-layout">
 <ts:setting name="code-segment-header-size" type="integer" access="visible">
 <ts:value>104</ts:value>
 </ts:setting>
 other memory layout options…
 </ts:section>
 <ts:section name="areas">
 <ts:setting name="number" type="integer" access="visible">
 <ts:value>4</ts:value>
 </ts:setting>
 </ts:section>
 other sections…
 </ts:TargetSettings>
 </ExtendedSettings>
 </Device>
</DeviceDescription>

The detailed description of options available in this section can be found in section 6.4.5.1.2 of the
CODESYS Control V3 Manual.

This section contains the information essential for the MicroRTS profile.

Please note that some of the options specified in the memory-layout section should be defined
accordingly in the sysdefines.h header file of the MicroRTS build configuration.

http://www.3s-software.com/schemas/TargetSettings-0.1.xsd�

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 48 of 74
CODESYSControlV3_uRTS_Manual.doc

There is a set of common parameters that should be specified in the memory-layout section:

Memory Layout Option Value Comment

code-segment-header-size 104 Code segment header size in the compact download
format.

memory-size Target specific Memory segment size for placing %M-referenced
variables of an IEC application.

input-size Target specific Input segment size for placing %I-referenced variables.

output-size Target specific Output segment size for placing %Q-referenced variables.

retain-size Target specific

Data segment size for placing variables declared as
RETAIN, i.e. the variables whose values should be kept
unchanged in case of power down. Please note that this
option value should be at least 24 bytes as less as the
actual size of non-volatile memory planned to be used for
storing RETAIN variables.

retain-in-own-segment 1 A separate memory segment should be used for placing
RETAIN variables.

constants-in-own-segment 1 Constants of user-defined data types, strings and arrays
will be placed to a separate segment.

pack-mode CPU specific Structure members alignment (in bytes). The value 8 is
used for ARM-based targets.

stack-alignment CPU specific Stack-alignment (in bytes). The value 8 is used for ARM-
based targets.

allocation-plus-in-percent 0 Disables any re-allocations of segments memory in the
target.

code-segment-prolog-size CPU-specific
Number of bytes at the beginning of each code area,
which will be used by a compiler for its internal purposes.
The value 12 is used for ARM-based targets.

There is also a special parameter for specifying the total number of different memory areas available
on the target:
<DeviceDescription>
 <Device>
 <ExtendedSettings>
 <ts:TargetSettings xmlns:ts="http://www.3s-software.com/schemas/TargetSettings-0.1.xsd">
 <ts:section name="memory-layout">
 memory layout options…
 </ts:section>
 <ts:section name="areas">
 <ts:setting name="number" type="integer" access="visible">
 <ts:value>4</ts:value>
 </ts:setting>
 … other memory areas options
 </ts:section>
 other sections…
 </ts:TargetSettings>
 </ExtendedSettings>
 </Device>
</DeviceDescription>

The same memory area can be used for various purposes, e.g. for storing an IEC application code and
constants or for placing input, output and internal variables. So, there are two options that have to be
specified while describing each memory area: flags and area-flags:

Depending on the budget of available flash memory and SRAM, multiple memory areas can be
specified.

For example, the NXP LPC1768-Stick target contains 4 memory areas:

1. Fixed-size area of size 0x10000 (64 kB) with the absolute start address 0x30000 for storing an
IEC application code and constants.

http://www.3s-software.com/schemas/TargetSettings-0.1.xsd�

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 49 of 74
CODESYSControlV3_uRTS_Manual.doc

2. Fixed-size data area of size 0x4000 (16 Kb) with the absolute start address 0x2007C000 for
placing input, output, memory and internal variables.

3. Fixed-size data area of size 0x2000 (8 Kb) with the absolute start address 0x20080000 for
placing input, output, memory and internal variables.

4. Fixed-size data area of size 0x1000 (4 Kb) with the absolute start address 0x20082000 for
placing retain and persistent variables.

The content of memory areas description used for the NXP LPC1768-Stick target is as follows:
<ts:section name="areas">

 Total number of memory areas
 <ts:setting name="number" type="integer" access="visible">
 <ts:value>4</ts:value>
 </ts:setting>

 Code area description
 <ts:section name="area_0">

 (0x40 | 0x2) – can contain code and constants
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0x42</ts:value>
 </ts:setting>

 0x10 – fixed size area
 <ts:setting name="area_flags" type="integer" access="visible">
 <ts:value>0x10</ts:value>
 </ts:setting>

 Absolute start address of the area
 <ts:setting name="start-address" type="integer" access="visible">
 <ts:value>0x30000</ts:value>
 </ts:setting>

 Area size minumum
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x10000</ts:value>
 </ts:setting>

 Area size maximum
 <ts:setting name="maximal-area-size" type="integer" access="visible">
 <ts:value>0x10000</ts:value>
 </ts:setting>

 Area can not be reallocated to grow in size
 <ts:setting name="allocation-plus-in-percent" type="integer" access="visible">
 <ts:value>0</ts:value>
 </ts:setting>

 </ts:section>

 1st data area description
 <ts:section name="area_1">

 Input, output, memory and internal variables
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0xFE9D</ts:value>
 </ts:setting>

 0x10 – fixed size area
 <ts:setting name="area_flags" type="integer" access="visible">
 <ts:value>0x10</ts:value>
 </ts:setting>

 Area absolute start address is 0x2007C000 (LPC1768 1st SRAM bank)
 <ts:setting name="start-address" type="integer" access="visible">
 <ts:value>0x2007C000</ts:value>
 </ts:setting>

 Area size minumum
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x4000</ts:value>

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 50 of 74
CODESYSControlV3_uRTS_Manual.doc

 </ts:setting>

 Area size maximum
 <ts:setting name="maximal-area-size" type="integer" access="visible">
 <ts:value>0x4000</ts:value>
 </ts:setting>

 Area cannot be reallocated to grow in size
 <ts:setting name="allocation-plus-in-percent" type="integer" access="visible">
 <ts:value>0</ts:value>
 </ts:setting>
 </ts:section>

 2nd data area, start address 0x20080000 (LPC1768 2nd SRAM bank), size 0x2000
 <ts:section name="area_2">
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0xFE9D</ts:value>
 </ts:setting>
 <ts:setting name="area_flags" type="integer" access="visible">
 <ts:value>0x10</ts:value>
 </ts:setting>
 <ts:setting name="start-address" type="integer" access="visible">
 <ts:value>0x20080000</ts:value>
 </ts:setting>
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x2000</ts:value>
 </ts:setting>
 <ts:setting name="maximal-area-size" type="integer" access="visible">
 <ts:value>0x2000</ts:value>
 </ts:setting>
 <ts:setting name="allocation-plus-in-percent" type="integer" access="visible">
 <ts:value>0</ts:value>
 </ts:setting>
 </ts:section>

 Retain data area description
 <ts:section name="area_3">

 (0x100 | 0x20) – persistent and retain data
 <ts:setting name="flags" type="integer" access="visible">
 <ts:value>0x120</ts:value>
 </ts:setting>

 Fixed-size area
 <ts:setting name="area_flags" type="integer" access="visible">
 <ts:value>0x10</ts:value>
 </ts:setting>

 Start address 0x20082000 (LPC1768 2nd SRAM bank)
 <ts:setting name="start-address" type="integer" access="visible">
 <ts:value>0x20082000</ts:value>
 </ts:setting>

 Area size minumum
 <ts:setting name="minimal-area-size" type="integer" access="visible">
 <ts:value>0x1000</ts:value>
 </ts:setting>

 Area size maximum
 <ts:setting name="maximal-area-size" type="integer" access="visible">
 <ts:value>0x1000</ts:value>
 </ts:setting>

 Area cannot be reallocated to grow in size
 <ts:setting name="allocation-plus-in-percent" type="integer" access="visible">
 <ts:value>0</ts:value>
 </ts:setting>
 </ts:section>
</ts:section>

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 51 of 74
CODESYSControlV3_uRTS_Manual.doc

5.2.5.2 Defining Code Area(s)
In the MicroRTS profile, the code area is typically an area in the non-volatile (flash) memory where an
IEC application code is placed and executed.

The MicroRTS profile uses a so-called compact download format of an IEC application binary (see
section 2.3.1.1 of the CODESYS Control V3 Manual). Because of this and in order to properly handle
the code area, the memory-layout section should contain the code-segment-header-size option with
the value set to 104 as shown above in the snippet of the device description file content.

The code-segment-prolog-size option should also be specified in some cases letting the CODESYS
compiler to use a sub-region in the code area for internal purposes. For example, in the Cortex-M3
MicroRTS reference implementation, this option is set to 12.

While defining a code memory area for a flash-based target device, use the following options in the
corresponding area description:

Memory Area Option Value Comment

flags 0x Area can contain code and constants.

area-flags 0x10 Area of fixed size should be located at some dedicated absolute
start address.

start-address Target specific Specify the start address of a memory region reserved on a
target device for an IEC application code.

minimal-area-size Target specific

Specify the minimal area size. For flash media, set this value
equal to maximal-area-size letting CODESYS to generate the
code segment of constant size regardless of the actual size of an
IEC application code.

maximal-area-size Target specific Specify the size of a memory region reserved on a target device
for an IEC application code.

allocation-plus-in-percent 0 Segment re-allocation is not allowed.

The MicroRTS binary executable build configuration should be supplied with information for reserving
the code area on the target device. For embedded devices similar to LPC1768 and GNU C-based
toolchains, there are two places for doing that:

1. Linker configuration file: in the Cortex-M3 MicroRTS reference implementation this file
(CODESYS.ld) contains the following options which define the code area:
/* Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\CODESYS.ld */
MEMORY
{
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x0080000
 … other memory options
}

SECTIONS
{
 /* fixup for the code area start address */
 PROVIDE(__FLASH_START = 0x30000);
 /* fixup for the code area size */
 PROVIDE(__FLASH_SIZE = 0x10000);

 … other memory section description information
}

2. sysspecific.h: this header file contains redefinitions for accessing corresponding fixup entries

specified in the linker configuration file:
/* Platforms\Native\CortexM3\NXP-LPC1768\sysspecific.h */
#ifdef __GNUC__ /* GNU Toolchain from e.g. CodeSourcery */
 /* Values, defined in the linker script */
 extern int __FLASH_START;
 extern int __FLASH_SIZE;
 #define FLASH_START (&__FLASH_START)
 #define FLASH_SIZE (&__FLASH_SIZE)
#endif

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 52 of 74
CODESYSControlV3_uRTS_Manual.doc

5.2.5.3 Defining Data Area(s)
The MicroRTS profile can contain any number of data areas. The most important thing to have in mind
is that these areas should be placed to some reserved SRAM regions.

While defining data memory areas for a MicroRTS target device, use the following options in the
corresponding area description:

Memory Area Option Value Comment

flags 0xFE9D Area can contain input, output, memory and internal variables.

area-flags 0x10 Area of fixed size should be located at some dedicated
absolute start address.

start-address Target specific Specify the start address of a memory region reserved on a
target device for an IEC application data.

minimal-area-size Target specific

Specify the minimal area size. For MicroRTS, set this value
equal to maximal-area-size letting CODESYS to generate the
data area of constant size regardless of the actual size used
by an IEC application.

maximal-area-size Target specific Specify the size of a memory region reserved on a target
device for an IEC application data placed to this data area.

allocation-plus-in-percent 0 Segment re-allocation is not allowed.

The MicroRTS binary executable build configuration should be supplied with information for reserving
data areas on the target device. For embedded devices similar to LPC1768 and GNU C-based
toolchains, there are two places for doing that:

1. Linker configuration file: in Cortex-M3 MicroRTS reference implementation this file
(CODESYS.ld) contains the following options which define the code area:
/* Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\CODESYS.ld */
MEMORY
{
 E_SRAM1 (rwx) : ORIGIN = 0x2007C000, LENGTH = 0x7000
 … other memory options
}
SECTIONS
{
 /* fixup for the 1st data area start address */
 PROVIDE(__DATA_AREA1_START = 0x2007C000);
 /* fixup for the 1st data area size */
 PROVIDE(__DATA_AREA1_SIZE = 0x4000);

 /* fixup for the 2nd data area start address */
 PROVIDE(__DATA_AREA2_START = 0x20080000);
 /* fixup for the 2nd data area size */
 PROVIDE(__DATA_AREA2_SIZE = 0x2000);

 /* fixup for the retain data area start address */
 PROVIDE(__RETAIN_START = 0x20082000);
 /* fixup for the retain data area size */
 PROVIDE(__RETAIN_SIZE = 0x1000);

 … other memory section description information
}

2. sysspecific.h: this header file contains redefinitions for accessing the corresponding fixup entries

specified in the linker configuration file:
/* Platforms\Native\CortexM3\NXP-LPC1768\sysspecific.h */
#ifdef __GNUC__ /* GNU Toolchain from e.g. CodeSourcery */
 /* Values, defined in the linker script */
 extern int __DATA_AREA1_START;
 extern int __DATA_AREA1_SIZE;
 #define DATA_AREA1_START (&__DATA_AREA1_START)
 #define DATA_AREA1_SIZE (&__DATA_AREA1_SIZE)

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 53 of 74
CODESYSControlV3_uRTS_Manual.doc

 extern int __DATA_AREA2_START;
 extern int __DATA_AREA2_SIZE;
 #define DATA_AREA2_START (&__DATA_AREA2_START)
 #define DATA_AREA2_SIZE (&__DATA_AREA2_SIZE)

 extern int __RETAIN_START;
 extern int __RETAIN_SIZE;
 #define RETAIN_START (&__RETAIN_START)
 #define RETAIN_SIZE (&__RETAIN_SIZE)
#endif

These macros defined for data areas in the sysspecific.h header file are used by the SysMem
component SysMemAllocArea routine. For more information, please refer to section 5.5.4.4.

5.2.6 Setting-up Tasks
The MicroRTS profile executes an IEC application code in a single tasking environment. The
CmpScheduleEmbedded component is used to emulate a co-operative multitasking in IEC
applications.

The Device – ExtendedSettings – TargetSettings – taskconfiguration section is used for defining and
configuring IEC tasks that will be used by the CODESYS V3 IDE.

While defining IEC tasks configuration for a MicroRTS target device, use the following options:

Tasks Option Recommended
Value Comment

supportmicroseconds 0

IEC task cycle interval cannot be set with microseconds
granularity. Leave this option unchanged, if the
SysTimeGetUs function of the SysTime component is not
implemented.

supportfreewheeling 0
IEC free-running (free-wheeling) tasks are not supported in
a single tasking environment. It is recommended to support
only interval and event tasks in the MicroRTS profile.

supportinterval 1 IEC interval tasks are supported. The interval tasks are
scheduled to run cyclically with specified cycle periods.

supportevent 0

IEC application event driven tasks are not supported. An
IEC application event is an event of changing the value of
some variable of type BOOL from FALSE to TRUE. This
option can be enabled.

supportextendedwatchdog 1 Watchdog monitoring of IEC tasks is turned on to prevent
them from stalling.

supportexternal 0 External event driven tasks are not supported.

defaulttaskpriority 1 Priority value assigned by CODESYS to a newly created
task.

mintaskpriority 0 Minimal priority value.

maxtaskpriority 1 Maximal priority value.

maxnumoftasks 2 Available number of IEC tasks (sum of maxeventtasks,
maxintervaltasks and maxfreetasks).

maxeventtasks 0 Available number of event-driven IEC tasks.

maxintervaltasks 2 Available number of interval tasks.

maxexternalevents 0 External event driven tasks are not supported.

maxfreetasks 0 Available number of free-wheeling tasks.

cycletimedefault t#20ms Interval value assigned by CODESYS to a newly created
task.

The MicroRTS binary executable build configuration should be supplied with tasks-related information
according to the options specified in the taskconfiguration section:

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 54 of 74
CODESYSControlV3_uRTS_Manual.doc

/* Platforms\Native\CortexM3\NXP-LPC1768\sysdefines.h */
#define NUM_OF_STATIC_IEC_TASKS 2
#define MAX_IEC_TASKS NUM_OF_STATIC_IEC_TASKS

Please note that the NUM_OF_STATIC_IEC_TASKS macro value should be set to the total number of
IEC tasks of different types which is specified by the maxnumoftasks option in the Device –
ExtendedSettings – TargetSettings – taskconfiguration section. If this section allows to add more IEC
tasks to the CODESYS project than specified by NUM_OF_STATIC_IEC_TASKS, MicroRTS will stop
executing an IEC application immediately with the corresponding exception.

5.3 Organizing the MicroRTS Source Tree

5.3.1 Source Tree Layout
The layout of the MicroRTS reference implementation source tree is described in section 3.4. The
source tree includes the Components folder containing platform-independent source code of functional
and system components, and two target specific folders: Platforms\Native\CortexM3\NXP-LPC1768
and Platforms\Native\CortexM3\TI-LM3S9B96_uRTS, which contain the platform-dependent
implementation of system components for two chips based on the ARM Cortex-M3 architecture.

This folders structure can be used as it is while working on a specific adaptation of MicroRTS, but if it
is necessary to develop several types of PLCs based on the same chip, the platform-dependent folders
structure could be different as shown below. It is recommended to keep the Components folder
structure unchanged, although there is a possibility to convert it to a flat files list.

Folder/File Description

Platforms Root folder for platform-dependent sources

 Native Folder for targets without OS

 CortexM3 Folder for ARM Cortex-M3-based targets

 MainCortexM3.c C module containing the main() entry point shared among all targets

 syscortexm3cfg.h
Set of configuration macros shared among all target devices. This
header file should be included to all PLC-specific sysdefines.h files
listed below.

 Sys Folder for the system components implementation shared among all
target devices

 SysMemCortexM3.c Shared platform-dependent implementation of SysMem

 SysCpuHandlingCortexM3.c Shared platform-dependent implementation of SysCpuHandling

 SysTimeCortexM3.c Shared platform-dependent implementation of SysTime

 SysExceptCortexM3.c Shared platform-dependent implementation of SysExcept

 SysTargetCortexM3.c Shared platform-dependent implementation of SysTarget

 SysIntCortexM3.c Shared platform-dependent implementation of SysInt

 SysComCortexM3.c Shared platform-dependent implementation of SysCom

 SysSocketEmbeddedCortexM3.c Shared platform-dependent implementation of SysSocketEmbedded

 <ChipNameFolder> Folder for the ChipName chip that is based on Cortex-M3

 Sys Folder for the system components implementation shared among all
the ChipName-based target devices

 SysFlash<ChipName>.c SysFlash implementation for the ChipName chip

 SysCom<ChipName>.c
 SysCom implementation for the ChipName chip

 SysSocket<ChipName>.c SysSocket implementation for the ChipName chip

 CmpSettings<ChipName>.c CmpSettings implementation for the ChipName chip

 <PLCType1> Folder for the PLCType1 target based on the ChipName chip.

 sysdefines.h Set of configuration macros specific for the PLCType1 target build

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 55 of 74
CODESYSControlV3_uRTS_Manual.doc

Folder/File Description

configuration. Should include syscortexm3cfg.h.

 sysspecific.h Set of memory-layout macros specific for the PLCType1 target build
configuration

 targetdefines.h Set of additional configuration macros specific for the PLCType1
target build configuration

 <ComponentList>.h Components list header file for the PLCType1 target

 <NotIncluded>.h Components exclusion list header file for the PLCType1 target

 Projects MicroRTS build projects for the PLCType1 target for different
toolchains

 <Toolchain1Folder> Toolchain1 project folder

 <Toolchain2Folder> Toolchain2 project folder.

 <PLCType2> Folder for the PLCType2 target based on the ChipName chip.

 sysdefines.h Set of configuration macros specific for the PLCType2 target build
configuration. Should include syscortexm3cfg.h.

 sysspecific.h Set of memory-layout macros specific for the PLCType2 target build
configuration

 targetdefines.h Set of additional configuration macros specific for the PLCType2
target build configuration

 <ComponentList>.h Components list header file for the PLCType2 target

 <NotIncluded>.h Components exclusion list header file for the PLCType2 target

 Projects MicroRTS build projects for the PLCType2 target for different
toolchains

 <Toolchain1Folder> Toolchain1 project folder

 <Toolchain2Folder> Toolchain2 project folder.

The following considerations are kept in mind while making such a structure of platform-dependent
sources:

1. There can be several PLC types (PLCType1, PLCType2, …) in development that are based on
the same ChipName chip which, in turn, is based on the ARM Cortex-M3 core. Thus, there can
be a shared folder (Platform\Native\CortexM3) containing the Cortex-M3 specific implementation
of some core system components in the Sys sub-folder: SysMem, SysCpuHandling, SysTime,
SysExcept, SysTarget, SysInt, SysCom (for the 16550-compatible serial port implementation)
and SysSocketsEmbedded (for the same implementation of sockets). This folder could also
contain the module containing the main() entry point and syscortexm3cfg.h containing a set of
shared macros specific for the MicroRTS profile of the runtime system.

2. The Platform\Native\CortexM3 folder can contain the <ChipNameFolder> sub-folder for the same
ChipName chip used for developing PLCType1, PLCType2, etc. The <ChipNameFolder> sub-
folder can contain the Sys sub-folder containing the ChipName specific implementation of system
components for chip specific peripherals including the flash memory unit, chip-specific serial
ports and chip-specific Ethernet adapters. There can also be a shared implementation of the
CmpSettings component here.

3. The Platform\Native\CortexM3\<ChipNameFolder> folder can contain sub-folders for each PLC
type: PLCType1, PLCType2, etc. containing a set of PLC type specific build configuration header
files and component list header files.

4. Each Platform\Native\CortexM3\<ChipNameFolder>\<PLCTypeN> folder can also contain the
Projects sub-folder. This sub-folder can be used for creating separate sub-folders for the
MicroRTS build and make projects for different toolchains or IDEs.

This structure allows to reuse the source code developed for one PLC project among several PLC
projects.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 56 of 74
CODESYSControlV3_uRTS_Manual.doc

5.3.2 Mandatory Configuration Macros for the MicroRTS Profile
The following set of macros should be defined in either sysdefines.h or syscortexm3cfg.h for the
MicroRTS profile of the runtime system:

The components list header file definition macro:
#define RTS_CONFIG_FILE <specify relative path to your components list header file>

The static linkage model activation macro:
#define STATIC_LINK

The compact runtime system profile activation macro:
#define RTS_COMPACT

The MicroRTS profile activation macro:
#define RTS_COMPACT_MICRO

The 64-bit data types deactivation macro:
#define SYSINTERNAL_DISABLE_64BIT

The FPU complex operation external library deactivation macro:
#define SYSINTERNAL_DISABLE_MATH

“Division by zero” exceptions handling macros:
#define SYSINTERNALLIB_DISABLE_INT32_DIVBYZERO_CHECK
#define SYSINTERNALLIB_DISABLE_REAL64_DIVBYZERO_CHECK

The snprintf, sprint re-definition macro to replace the standard C-library implementations:
#define PREFER_PORTABLE_SNPRINTF

The set of macros to disable most of the core components export tables for external libraries:
#define CM_DISABLE_EXTREF
#define CMPAPPEMBEDDED_DISABLE_EXTREF
#define CMPHEAPPOOL_DISABLE_EXTREF
#define CMPMEMPOOL_DISABLE_EXTREF
#define CMPBINTAGUTIL_DISABLE_EXTREF
#define CMPBLKDRVCOM_DISABLE_EXTREF
#define CMPCHANNELMGREMBEDDED_DISABLE_EXTREF
#define CMPCHANNELSERVEREMBEDDED_DISABLE_EXTREF
#define CMPCHECKSUM_DISABLE_EXTREF
#define CMPCOMMUNICATIONLIB_DISABLE_EXTREF
#define CMPDEVICE_DISABLE_EXTREF
#define CMPMONITOR_DISABLE_EXTREF
#define CMPNAMESERVICESERVER_DISABLE_EXTREF
#define CMPSRV_DISABLE_EXTREF
#define CMPCHECKSUM_DISABLE_EXTREF
#define CMPEVENTMGR_DISABLE_EXTREF
#define CMPLOGEMBEDDED_DISABLE_EXTREF
#define CMPROUTEREMBEDDED_DISABLE_EXTREF
#define CMPSCHEDULEEMBEDDED_DISABLE_EXTREF
#define CMPSETTINGSEMBEDDED_DISABLE_EXTREF
#define SYSCOM_DISABLE_EXTREF
#define SYSINT_DISABLE_EXTREF
#define SYSEXCEPT_DISABLE_EXTREF
#define SYSFILEFLASH_DISABLE_EXTREF
#define SYSSOCKETEMBEDDED_DISABLE_EXTREF
#define SYSFLASH_DISABLE_EXTREF
#define SYSTARGET_DISABLE_EXTREF

If some of these macros are not defined, memory consumption could significantly increase.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 57 of 74
CODESYSControlV3_uRTS_Manual.doc

5.4 Defining Components

5.4.1 Components Source Code Modifications
The MicroRTS profile can only contain components which are prepared to be part of this profile. As
stated previously in section 4.3, the full-fledged Component Manager used in the full and compact
profiles of the runtime system was replaced for the light-weight equivalent providing only a minimal
required set of functionality. Therefore, in order to use the same source tree for all profiles, the
following changes have to be made in each component, if it has not been already done:

1. The ComponentEntry, ExportFunctions, ImportFunctions, CmpGetVersion component interface
functions should be excluded from the component's root module using the
RTS_COMPACT_MICRO marco:
/* Components\CmpAppEmbedded\CmpAppEmbedded.c fragment */
#ifndef RTS_COMPACT_MICRO
DLL_DECL int CDECL ComponentEntry(INIT_STRUCT *pInitStruct)
{
 /* ... */
 return ERR_OK;
}
static int CDECL ExportFunctions(void)
{
#ifndef CMPAPPEMBEDDED_DISABLE_EXTREF
 EXPORT_STMT;
#endif
 return ERR_OK;
}
static int CDECL ImportFunctions(void)
{
 /* Macro to import functions */
 IMPORT_STMT;
 return ERR_OK;
}
static RTS_UI32 CDECL CmpGetVersion(void)
{
 return CMP_VERSION;
}
#endif

2. If some part of component initialization is performed inside the ComponentEntry function, the

ComponentEntry function should be kept available in that component root module and
conditionally called from the component's HookFunction on some early phase of initialization:
/* Components\CmpIecTask\CmpIecTask.c fragment */
static RTS_RESULT CDECL HookFunction(RTS_UI32 ulHook,
 RTS_UINTPTR ulParam1,
 RTS_UINTPTR ulParam2)
{
 switch (ulHook)
 {
 case CH_INIT:
 {
 #ifdef RTS_COMPACT_MICRO
 ComponentEntry(NULL);
 #endif
 InitTasks();
 break;
 }
 /* ... other phases handling */
 default:
 break;
 }

 return ERR_OK;
}

In this case, the ComponentEntry function should also be modified to exclude usage of its single
parameter:

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 58 of 74
CODESYSControlV3_uRTS_Manual.doc

/* Components\CmpIecTask\CmpIecTask.c fragment */
DLL_DECL int CDECL ComponentEntry(INIT_STRUCT *pInitStruct)
{

 /* If RTS_COMPACT_MICRO is defined, the pInitStruct parameter is always NULL */
#ifndef RTS_COMPACT_MICRO
 pInitStruct->CmpId = COMPONENT_ID;
 pInitStruct->pfExportFunctions = ExportFunctions;
 pInitStruct->pfImportFunctions = ImportFunctions;
 pInitStruct->pfGetVersion = CmpGetVersion;
 pInitStruct->pfHookFunction = HookFunction;
 pInitStruct->pfCreateInstance = CreateInstance;
 pInitStruct->pfDeleteInstance = DeleteInstance;

 s_pfCMRegisterAPI = pInitStruct->pfCMRegisterAPI;
 s_pfCMRegisterAPI2 = pInitStruct->pfCMRegisterAPI2;
 s_pfCMGetAPI = pInitStruct->pfCMGetAPI;
 s_pfCMGetAPI2 = pInitStruct->pfCMGetAPI2;
 s_pfCMCallHook = pInitStruct->pfCMCallHook;
 s_pfCMRegisterClass = pInitStruct->pfCMRegisterClass;
 s_pfCMCreateInstance = pInitStruct->pfCMCreateInstance;
#endif
 s_iTasks = 0;
 s_hIecTaskPool = RTS_INVALID_HANDLE;
 s_hIecApplicationPool = RTS_INVALID_HANDLE;
 s_semExclusiveSection = RTS_INVALID_HANDLE;
#ifndef RTS_SIL2
 s_bSynchronize = 0;
 s_bSynchronizeApplication = 0;
#endif
 s_nWaitForStopTimeoutMs = 0;
 memset(s_szVisuTask, 0, sizeof(s_szVisuTask));

 /* ... */

 return ERR_OK;

}

The same change has to be made in the secondary modules of system components:
/* Platforms\Native\CortexM3\NXP-LPC1768\Sys\SysMemCortexM3.c fragment */
RTS_RESULT CDECL SysMemOSInit(INIT_STRUCT *pInit)
{
#ifndef RTS_COMPACT_MICRO
 s_pfCMRegisterAPI = pInit->pfCMRegisterAPI;
 s_pfCMRegisterAPI2 = pInit->pfCMRegisterAPI2;
 s_pfCMGetAPI = pInit->pfCMGetAPI;
 s_pfCMGetAPI2 = pInit->pfCMGetAPI2;
 s_pfCMCallHook = pInit->pfCMCallHook;
 s_pfCMRegisterClass = pInit->pfCMRegisterClass;
 s_pfCMCreateInstance = pInit->pfCMCreateInstance;
#endif

 return ERR_OK;
}

3. The Events Manager and the User Manager components are not supported in the MicroRTS
profile, so it is strongly recommended to exclude all the code referring to or related with these
components:
/* Components\CmpLogEmbedded\CmpLogEmbedded.c fragment */
#ifndef CMPEVENTMGR_NOTIMPLEMENTED
static RTS_HANDLE s_hEventLogAdd = RTS_INVALID_HANDLE;
#endif
static RTS_RESULT CDECL HookFunction(RTS_UI32 ulHook,
 RTS_UINTPTR ulParam1,
 RTS_UINTPTR ulParam2)
{
 switch (ulHook)
 {
 case CH_INIT_SYSTEM:
 {
#ifdef RTS_COMPACT_MICRO
 ComponentEntry(NULL);
#endif

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 59 of 74
CODESYSControlV3_uRTS_Manual.doc

 break;
 }
 case CH_INIT:
 {
 break;
 }
 case CH_INIT2:
 {
#ifndef CMPEVENTMGR_NOTIMPLEMENTED
 if (CHK_EventCreate)
 s_hEventLogAdd = CAL_EventCreate(EVT_LogAdd, COMPONENT_ID, NULL);
#endif
 CAL_LogInitServer();
 break;
 }
 case CH_INIT3:
 {
#ifndef CMPUSERMGR_NOTIMPLEMENTED
 if (CHK_UserMgrObjectAdd)
 {
 RTS_RESULT Result = ERR_OK;
 RTS_HANDLE hObject;
 hObject = CAL_UserMgrObjectAdd(USERDB_OBJECT_LOGGER, &Result);
 if (Result != ERR_OK && hObject == RTS_INVALID_HANDLE)
 return ERR_FAILED;
 }
#endif
 break;
 }

 /* ... */

 default:
 break;
 }
 return 0;
}

4. The light-weight Component Manager used in the MicroRTS profile doesn't perform any calls to

the components HookFunction routines for shutdown phases, so it is recommended to exclude
the corresponding code from the components source code:
/* Components\CmpLogEmbedded\CmpLogEmbedded.c fragment */
static RTS_RESULT CDECL HookFunction(RTS_UI32 ulHook,
 RTS_UINTPTR ulParam1,
 RTS_UINTPTR ulParam2)
{
 switch (ulHook)
 {
 /* other life-time phases handling ..*/
#ifndef RTS_COMPACT_MICRO
 case CH_EXIT_COMM:
 break;
 case CH_EXIT_TASKS:
 break;
 case CH_EXIT3:
 {
 if (CHK_UserMgrObjectOpen && CHK_UserMgrObjectRemove)
 {
 /* ... */
 }
 break;
 }
 case CH_EXIT2:
 {
 CAL_LogExitServer();
 /* ... */
 break;
 }
 case CH_EXIT:
 break;
 case CH_EXIT_SYSTEM:
 {
 /* ... */

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 60 of 74
CODESYSControlV3_uRTS_Manual.doc

 break;
 }
#endif
 default:
 break;
 }
 return 0;
}

5.4.2 Adding Components to the MicroRTS Build Configuration
The following steps are required to add some component to the MicroRTS build configuration:

1. Create the components list header file for the target build. The components list header file should
contain the following entries:
/* Components list header file */
CDS3_DECLARE_COMPONENTS_LIST_BEGIN(ListName)
 CDS3_ADD_COMPONENT_ENTRY(ComponentName1)
 CDS3_ADD_COMPONENT_ENTRY(ComponentName2)
 ...
 CDS3_ADD_COMPONENT_ENTRY(ComponentNameN)
CDS3_DECLARE_COMPONENTS_LIST_END(ListName)

2. The detailed information about the components list header file is listed in section 4.4.3.2. Please

make sure that this header file doesn't contain a single include guard directive looking like this:
/* Don't do it in your components list header file! */
#ifndef ___MY_HEADER1_H___
#define ___MY_HEADER1_H___
/* MyHeader1.h content */
/* ... */
#endif

3. Define the RTS_CONFIG_FILE macro with the value containing a path to the components list

header file either in the sysdefines.h header file of specific build configuration or as a -D compiler
option:
/* sysdefines.h header file */
#ifndef RTS_CONFIG_FILE
define RTS_CONFIG_FILE rtsconfig/uRtsCortexM3.h
#endif

4. Create the components exclusion list header file containing _NOTIMPLEMENTED macros for the

components which were not included to the components list header file. Include this file to the
sysdefines.h header file:
/* sysdefines.h header file */
#include "rtsconfig/CortexM3_NotImpl.h"

The information about the components exclusion list header file is listed in section 4.4.3.3.

5. Make your sysdefines.h header file accessible for the compiler used for building the MicroRTS
binary executable. This can typically be done either by using the corresponding -I or /I compiler
option or using the IPATH variable in the build configuration make-file.

6. Include the components source modules to the toolchain make-file or IDE project.

5.5 Adapting Core System Components

5.5.1 Overview
In most cases, the platform-independent functional components of the CODESYS V3 runtime system
are ready to use without any changes in OEM-adaptations of MicroRTS. But the platform-dependent
system components have to be adapted to a specific target CPU and/or hardware configuration of the
target device.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 61 of 74
CODESYSControlV3_uRTS_Manual.doc

For the MicroRTS profile, the following system components should be considered as first candidates
for platform-specific adaptation:

1. SysTarget: should implement functions that provide a node name and a serial number of specific
target device for the communication and device identification components.

2. SysCpuHandling: should contain a CPU-specific implementation of an IEC code entry point
(SysCpuCallIecFuncWithParams), atomic operations on integer operands and stack unwinding
operations.

3. SysMem: should contain a target specific implementation of memory management routines.

4. SysTime: should implement, at least, the SysTimeGetMs routine that returns a milliseconds
counter.

5. SysFlash: should contain a set of functions for reading and writing the flash ROM unit that is
going to be used for storing and executing an IEC application code.

6. SysInt: should implement, at least, a pair of functions implementing global lock/unlock operations
(SysIntEnableAll/SysIntDisableAll).

7. There should also be a target-dependent function which is called at the very beginning of
execution of MicroRTS to perform initial CPU and peripherals configuration. In the Cortex-M3
MicroRTS reference implementation, this function, named sysInit, is called on entering the
MicroRTS entry point main().

8. If there is a need to configure some components via the CmpSettingsEmbedded component
interface, the separate CmpSettingsEmbedded root module can be created to organize and
handle the parameters storage.

9. The SysExcept component could optionally be adapted, if it is required to handle exceptions in an
IEC code.

10. Finally, if it is required to have support for communication between CODESYS V3 IDE and a
target, via serial line or Ethernet connection, the corresponding component (SysCom or
SysSocketEmbedded) should be implemented.

The process of adapting core system components, in general, may consist of the following steps:

1. Create a secondary C module named SysComponentNameTargetName.c for each component to
be adapted in the target specific Sys folder. For example, for the SysMem component and the
Cortex-M3 target CPU it would be SysMemCortexM3.c.

2. Add all the interface functions, which should be implemented by each component in a platform
specific way, to the corresponding secondary modules. Make adaptation for the mandatory
functions, the optional functions may return ERR_NOTIMPLEMENTED error code.

3. Add a pair of functions (SysComponentNameOSInit and SysComponentNameOSHookFunction)
referenced in the corresponding component root modules to the secondary modules of each
component. For example, in the SysMem component these functions have names
SysMemOSInit and SysMemOSHookFunction.

5.5.2 Specifying Target Identification
The SysTarget component provides the target identification information needed for the target to be part
of CODESYS V3 communication infrastructure.

There are two functions in this component: SysTargetGetNodeName and SysTargetGetSerialNumber.

The first function returns the target node name that is displayed in the CODESYS V3
Communications Settings tab when the corresponding network node is found during network
rescanning process. It is enough to implement this function as follows:
/* sysdefines.h header file */
RTS_RESULT CDECL SysTargetGetNodeName(RTS_WCHAR * pwszName, unsigned int *pnMaxLength)
{
 unsigned int uiLen;

 if (pnMaxLength == NULL)
 return ERR_PARAMETER;

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 62 of 74
CODESYSControlV3_uRTS_Manual.doc

 uiLen = *pnMaxLength;
 if (CAL_SysTargetGetConfiguredNodeName(pwszName, &uiLen) != ERR_OK)
 {
 if (pwszName != NULL)
 CAL_CMUtlStrToW(SYSTARGET_NODE_NAME, pwszName, *pnMaxLength);
 *pnMaxLength = strlen(SYSTARGET_NODE_NAME) + 1;
 }
 else
 *pnMaxLength = uiLen;
 return ERR_OK;
}

The SYSTARGET_NODE_NAME macro should be defined in the sysdefines.h header file as listed in
section 5.2.2.

The SysTargetGetSerialNumber can optionally be implemented to return a target device serial number.

5.5.3 Implementing CPU-specific Functions
There are three mandatory functions in the SysCpuHandling component interface, which should be
implemented in the secondary SysCpuHandling component module:

SysCpuCallIecFuncWithParams: an IEC code entry point. This routine can be implemented in a
separate assembly module, or as a C routine (if inline assembly is supported by the toolchain). It
should prepare a stack space with the size enough for passing parameters supplied by the pParam
parameter.

The pParam content size is supplied by the iSize parameter, so the memory size, that has to be
allocated on stack, should be equal to iSize plus a stack alignment delta, if iSize is not aligned by the
natural stack alignment constant specific for a CPU. The natural stack alignment constant is specified
by the Device – ExtendedSettings – TargetSettings – memory-layout : stack-alignment option in the
device description file.

When the stack memory is allocated, the pParam content is copied to this space, and then the
pfIECFunc routine is called.

When the pfIECFunc function returns, the stack memory content reserved prior to calling to pfIECFunc
should be copied back to pParam.

In most cases, the SysCpuCallIecFuncWithParams routine is readily available in the starter package
delivered by 3S.

SysCpuTestAndSetBit: a primitive used to atomically set or reset a specified bit in the value referenced
by the first parameter.

SysCpuAtomicAdd: a primitive used to atomically add or subtract the value supplied with the second
parameter to/from the value referenced by the first parameter.

There is a generic implementation for these two functions provided by 3S. The only thing that has to be
done to use this generic implementation is to define the following macros in the sysspecific.h header
file:
/* sysspecific.h header file */
#define SYS_INT_PARAM RTS_UI32
#define SYS_INT_LOCK(param) SysIntDisableAll(¶m)
#define SYS_INT_UNLOCK(param) SysIntEnableAll(¶m)

Other functions exposed by the SysCpuHandling component interface can return
ERR_NOTIMPLEMENTED, especially if it is not required to support exceptions handling.

Please refer to the SysCpuHandlingCortexM3.c source code supplied with the Cortex-M3 MicroRTS
Starter Package for more information about these functions.

The SysInt component contains two mandatory functions mentioned above: SysIntDisableAll and
SysIntEnableAll. They are used to disable and enable all the interrupts that can be masked on the
target CPU. These functions can be implemented in the SysInt component's secondary module or in a
separate assembly file.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 63 of 74
CODESYSControlV3_uRTS_Manual.doc

5.5.4 Implementing Memory Management

5.5.4.1 Overview
There are several topics that need to be considered while implementing a memory management
infrastructure for the MicroRTS profile:

1. Definition of the runtime stack.

2. Free storage (a.k.a heap) implementation.

3. IEC code and data areas organization.

The last thing that is worth mentioning is an allocation of fixed-size memory blocks. This functionality
may be required while developing device drivers.

5.5.4.2 Defining the Runtime Stack
The runtime stack for an embedded device is typically specified in the integrated development
environment (IDE) used for the target firmware development, or directly in the source code, sometimes
in conjunction with the linker configuration file.

In the Cortex-M3 MicroRTS reference implementaion, the stack size is set to 1280 32-bit words (5120
bytes) by declaring a special static variable stack_loc, which is then explicitly placed as the first
element to the interrupt vector table:
/* Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\src\Source\System\startup.c */
static unsigned long stack_loc[0x500];
/***
 * Interrupt Vector Table
 ***/
Interrupt interrupts[] __attribute__ ((section(".isr_vector"))) =
{
 // The initial stack pointer
 (Interrupt)((unsigned long)stack_loc + sizeof(stack_loc)),
 ResetISR, // 1 reset handler
 ... other vectors
};

The stack pointer value placed to the interrupt vector table contains an ending address of stack_loc
since the stack pointer “grows” towards lower addresses.

Please note, that there is one essential option specified in the sysdefines.h header file, which affects
the stack usage significantly:
/* Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\sysdefines.h */
#define BTAG_MAX_NESTED_TAGS 8

This macro is used to limit the depth of recursive calls in the online services while deserializing
incoming requests from CODESYS. For the normal operation of communication services, it is typically
enough to define this macro as 4.

5.5.4.3 Defining the Runtime Free Storage (Heap)
The MicroRTS profile itself doesn't require any free storage (i.e. a heap) to be implemented, since
there are no calls to malloc/calloc/free in the MicroRTS core components. But sometimes it is
necessary to have a free storage for implementing some dynamic buffers allocation/deallocation while
developing device drivers.

The low-end embedded CPU and microcontrollers are normally equipped with an integrated RAM unit
for accessing one or several banks of static RAM. Each bank has a limited size (16K, 32K or more). In
many cases it is required to organize a free storage in several banks, and even in separate regions of
available memory with non-adjacent base addresses.

The CmpHeapPool component can be used for the free storage implementation that meets the
requirements listed above. This component implements a flavor of the buddy algorithm that splits
available memory regions to blocks with sizes of power of 2 and then attempts to satisfy incoming
requests for memory blocks in an optimal way. There is one parameter defined by the
HMEM_MIN_BLOCK_SIZE_POWER macro that can optionally be specified for this component in the
sysdefines.h header file. The default value for this macro is set to 6, so as the minimal size of blocks
managed by the component is 64 bytes.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 64 of 74
CODESYSControlV3_uRTS_Manual.doc

The example of usage can be obtained in the SysMem component implementation:
/* Platforms\Native\CortexM3\NXP-LPC1768\Sys\SysMemCortexM3.c */
#include <CmpHeapPoolItf.h>

/* WARNING! It is not thread-safe! */
static RTS_HANDLE hHeapPool = RTS_INVALID_HANDLE;

RTS_RESULT CDECL SysMemOSHookFunction(RTS_UI32 ulHook, RTS_UINTPTR ulParam1, RTS_UINTPTR ulParam2)
{
 switch (ulHook)
 {
 case CH_INIT_SYSTEM:
 {
 {
 /* two regions reserved in CODESYS.ld are used for the heap */
 RTS_RESULT res;
 RTS_MEM_REGION heap_regions[] =
 {
 { (RTS_UINTPTR)HEAP_START, (RTS_SIZE)(HEAP_END - HEAP_START) },
 { (RTS_UINTPTR)HEAP_REGION2, (RTS_SIZE)HEAP_REGION2_SIZE },
 { (RTS_UINTPTR)0, 0 }
 };
 hHeapPool = CAL_HeapPoolInit(heap_regions, &res);
 }
 break;
 }
 default:
 break;
 }
 return ERR_OK;
}
void* CDECL SysMemAllocData(char *pszComponentName, RTS_SIZE ulSize, RTS_RESULT *pResult)
{
 return CAL_HeapPoolAlloc(hHeapPool, ulSize, pResult);
}

RTS_RESULT CDECL SysMemFreeData(char *pszComponentName, void* pData)
{
 return CAL_HeapPoolFree(hHeapPool, pData);
}

The regions used in the implementation above are reserved in the linker configuration file:
/* Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\CODESYS.ld */
MEMORY
{
 /* … */
 /* Additional heap memory (3072 bytes) */
 E_SRAM2 (rwx) : ORIGIN = 0x20083400, LENGTH = 0xC00
}
/* … */
SECTIONS
{
 /* ... other regions ... */
 PROVIDE(__HEAP_REGION2 = 0x20083400);
 PROVIDE(__HEAP_REGION2_SIZE = 0xC00);
 .text :
 {
 _text = .;
 KEEP(*(.isr_vector))
 (.text)
 (.rodata)
 _etext = .;
 } > FLASH
 .data : AT(ADDR(.text) + SIZEOF(.text))
 {
 _data = .;
 *(vtable)
 (.data)
 _edata = .;
 } > SRAM
 __exidx_start = .;
 .ARM.exidx :

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 65 of 74
CODESYSControlV3_uRTS_Manual.doc

 {
 (.ARM.exidx .gnu.linkonce.armexidx.*)
 } > SRAM
 __exidx_end = .;
 .bss :
 {
 _bss = .;
 (.bss)
 *(COMMON)
 _ebss = .;
 } > SRAM
 _end = .;
 PROVIDE(__HEAP_START = _end);
 /* 32 upper bytes area is used by IAP! */
 PROVIDE(__HEAP_END = 0x10007FC0);
}

The __HEAP_START and __HEAP_END fixups are defined in the first SRAM bank of the LPC1768
right after the bss and data segments. The __HEAP_REGION2 and __HEAP_REGION2_SIZE fixups
refer to the region in the second SRAM bank right after the IAP (In Application Programming) buffer
required for the SysFlash component to write to the flash memory.

The sysspecific.h header file contains redefinitions for these fixups, as they can easily be used as
normal variables in a C code:
/* Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\sysspecific.h */
extern int __HEAP_START;
extern int __HEAP_END;
#define HEAP_START (&__HEAP_START)
#define HEAP_END (&__HEAP_END)

extern int __HEAP_REGION2;
extern int __HEAP_REGION2_SIZE;
#define HEAP_REGION2 (&__HEAP_REGION2)
#define HEAP_REGION2_SIZE (&__HEAP_REGION2_SIZE)

5.5.4.4 Defining IEC Application Areas
Sections and describe how to specify the IEC code and data memory areas in the device description
file. This information is needed for the CODESYS IEC compiler to place executable code and data of
the user application.

This sub-section contains the information on how to manage the IEC memory areas in the runtime
system.

The SysMem component interface exposes two functions that need to be implemented in the
component's secondary module in a target specific way. The compact and MicroRTS profiles of the
CODESYS runtime system typically use absolute addresses for the IEC memory areas. The IEC
memory areas specified in the device description file for the target should be explicitly reserved in the
linker description file (or in the locator description file) and the corresponding fixups may be redefined
in the sysspecific.h header file as described in sections and . Then the two IEC area handling
functions have to be implemented in the SysMem component's secondary module: SysMemAllocArea
and SysMemFreeArea.

In the Cortex-M3 MicroRTS reference implementation these functions look as follows:
/* IEC Area Descriptor */
typedef struct tagDataAreaSpec
{
 /* area start address */
 void* pAreaAddress;
 /* area size */
 RTS_UI32 size;
 /* 0: volatile data; or DA_RETAIN */
 RTS_UI16 type;
 /* 1: allocated; 0: not allocated */
 RTS_UI16 inUse;
} DataAreaSpec;

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 66 of 74
CODESYSControlV3_uRTS_Manual.doc

static DataAreaSpec s_DataAreasList[] =
{
 { (void*)DATA_AREA1_START, (RTS_UI32)DATA_AREA1_SIZE, 0, 0 },
 { (void*)DATA_AREA2_START, (RTS_UI32)DATA_AREA2_SIZE, 0, 0 }
};

static DataAreaSpec s_RetainAreasList[] =
{
 { (void*)RETAIN_START, (RTS_UI32)RETAIN_SIZE, (RTS_UI16)DA_RETAIN, 0 }
};

static DataAreaSpec* DataAreaSpec_get(DataAreaSpec* pAreaList,
 RTS_SIZE list_size,
 void* pAreaAddress,
 RTS_SIZE requested_size)
{
 /* if pAreaAddress != NULL, then the allocated area with this address is requested */
 /* if pAreaAddress == NULL, then a free area is requested */
 RTS_UI16 in_use_condition = (RTS_UI16) (NULL != pAreaAddress);
 int idx;

 for (idx = 0; idx < list_size; ++idx)
 {
 if (pAreaList[idx].size >= requested_size && in_use_condition == pAreaList[idx].inUse)
 {
 if (NULL != pAreaAddress && pAreaList[idx].pAreaAddress != pAreaAddress)
 continue;
 return &pAreaList[idx];
 }
 }

 return NULL;
}

void* CDECL SysMemAllocArea(char *pszComponentName,
 unsigned short usType,
 RTS_SIZE ulSize,
 RTS_RESULT *pResult)
{
 void* pAreaAddr = NULL;
 DataAreaSpec* pArea = NULL;
 DataAreaSpec* pAreaList = NULL;
 RTS_SIZE list_size = 0;
 RTS_RESULT Result = ERR_FAILED;

 if (IsArea(usType, DA_RETAIN))
 {
 pAreaList = s_RetainAreasList;
 list_size = sizeof(s_RetainAreasList) / sizeof(DataAreaSpec);
 }
 else if (!IsArea(usType, DA_CODE))
 {
 pAreaList = s_DataAreasList;
 list_size = sizeof(s_DataAreasList) / sizeof(DataAreaSpec);
 }

 if (0 != list_size)
 {
 pArea = DataAreaSpec_get(pAreaList, list_size, NULL, ulSize);

 if (NULL != pArea)
 {
 pAreaAddr = pArea->pAreaAddress;
 pArea->inUse = (RTS_UI16) 1;
 Result = ERR_OK;
 }
 }

 RTS_SETRESULT(pResult, Result);

 return pAreaAddr;
}

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 67 of 74
CODESYSControlV3_uRTS_Manual.doc

RTS_RESULT CDECL SysMemFreeArea(char *pszComponentName, void* pCode)
{
 RTS_RESULT Result = ERR_PARAMETER;
 if (NULL != pCode)
 {
 DataAreaSpec* pArea = DataAreaSpec_get(s_RetainAreasList,
 sizeof(s_RetainAreasList) / sizeof(DataAreaSpec),
 pCode,
 0);

if (NULL == pArea)
 {
 pArea = DataAreaSpec_get(s_DataAreasList,
 sizeof(s_DataAreasList) / sizeof(DataAreaSpec),
 pCode,
 0);
 }

 if (NULL != pArea)
 {
 Result = ERR_OK;
 pArea->inUse = (RTS_UI16) 0;
 }
 }

 return Result;
}

The DataAreaSpec structure is used to declare static arrays of data area descriptors for input, output,
global and retain variables. When some area is requested during an IEC application startup, the
SysMemAllocArea routine returns an area address obtained from the corresponding static array of
descriptors, and marks this area descriptor as it is now in use.

When some area is deallocated (if an IEC application is being deleted) by the call to
SysMemFreeArea, the corresponding area descriptor is marked as it is no longer in use.

Note: If you wish to implement retain variables using an integrated on-chip SRAM, the microcontroller
chip power supply should be equipped with a battery and special circuitry to switch over the CPU power
when the main power is interrupted.

5.5.4.5 Fixed-size Memory Blocks Allocation
While developing device drivers or other system software, it is sometimes necessary to allocate and
deallocate memory blocks of the same size which are then used as objects of some user defined data
type. The use of general purpose memory allocation functions (malloc/free) is typically not the best
approach to achieve this goal, since it could lead to memory fragmentation and even exhaustion.

There are two mechanisms available in the CODESYS V3 runtime system: a generic memory pool
interface and a separate FixedBlocksPool interface exposed by the CmpMemPool component.

The CmpMemPool generic interface is used for allocation/deallocation memory blocks of fixed size
from static memory buffers and/or from the free storage. Each CmpMemPool pool object can also be
used as a sequential container for objects occupying memory blocks allocated from this or some other
memory pool.

The FixedBlocksPool is a pure memory allocator that can be used for allocation/deallocation memory
blocks of fixed size from static memory buffers and/or from the free storage, and also for reclaiming all
memory blocks provided by the allocator using a single function call. Reclaiming means that all the
blocks managed by some pool are now free but not returned to the free storage.

There are two differences between the pool object provided by a generic CmpMemPool interface and
the one provided by FixedBlocksPool:

1. FixedBlocksPool doesn't have any bookkeeping overhead in each memory block.

2. FixedBlocksPool doesn't have an internal linked list for containing objects occupying memory
blocks allocated by this or another pool.

There are two macros related to the CmpMemPool component:

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 68 of 74
CODESYSControlV3_uRTS_Manual.doc

RTS_MEMPOOL_VER2: if this macro is defined in the sysdefines.h header file, the FixedBlocksPool
becomes available for usage and the generic CmpMemPool interface becomes to be implemented in
terms of FixedBlocksPool using the same allocation/deallocation algorithm.

FIXED_BLOCK_ALLOCATOR_SEPARATED: if the RTS_MEMPOOL_VER2 is not defined, and the
FIXED_BLOCK_ALLOCATOR_SEPARATED macro is defined in the sysdefines.h header file, the
FixedBlocksPool implementation resides in the FixedBlocksAllocator.c module and is excluded from
the CmpMemPool.c module. In this case the FixedBlocksAllocator.c module should be included into
the makeßfile or IDE project used for building the MicroRTS binary executable.

5.5.5 Implementing System Ticks
The SysTime component interface exposes three functions used by core components of RTS for
obtaining the information about system time: SysTimeGetMs, SysTimeGetUs, SysTimeGetNs.

The SysTimeGetMs function is mandatory. It returns the monotonic rising milliseconds counter. This
function should always be implemented in the SysTime component secondary module because it is
used by communication components dealing with timeouts and, in some cases, by the IEC tasks
scheduler. In Cortex-M3 MicroRTS this function is implemented in the simplest way returning the value
of the counting variable that is incremented by the Cortex-M3 TIMER0 interrupt service routine (for
details please refer to the isr_TIMER0 routine implementation in Platforms\Native\CortexM3\NXP-
LPC1768\Projects\CodeSourcery\src\Source\System\startup.c).

While implementing SysTimeGetMs in a similar way, please make sure that the priority of the interrupt
used for incrementing the milliseconds counting variable is higher than priorities of other interrupts,
especially of those in which servicing requires other lower priority interrupts to be disabled.

The rest two functions (SysTimeGetUs, SysTimeGetNs) are not implemented in MicroRTS.

5.5.6 Implementing Access to a Flash Memory
The MicroRTS profile implies that an IEC application code is placed and executed directly in an
integrated or external flash memory. The SysFlash and SysFileFlash components are in charge to
provide support for this functionality. The flash memory is logically split in two areas: the first area
(FA_CODE) is used for storing an IEC application binary code and constant data, and the second one
(FA_FILE) for emulating a simplified file system that is required for proper handling of IEC applications.

The SysFlash component consists of, at least, two modules: Components\SysFlash\SysFlash.c and
the platform-dependent secondary module implementing the real read/write/erase access operations
for a specific flash memory device. The secondary module should implement the following routines:

1. SysFlashInit: initializes the platform-dependent flash abstraction layer implementation.

2. SysFlashErase_: erases a specific region of the FA_CODE or FA_FILE flash memory area.

3. SysFlashRead_: reads a specific region of the FA_CODE or FA_FILE flash memory area.

4. SysFlashWrite_: writes to a specific region of the FA_CODE or FA_FILE flash memory area.

5. SysFlashFlush_: writes a cashe buffer to a specific region of the FA_CODE or FA_FILE flash
memory area.

6. SysFlashGetPhysicalAddress: returns the beginning address of the FA_CODE or FA_FILE
memory area.

7. SysFlashGetSize: returns the size of the FA_CODE or FA_FILE memory area.

The integrated flash memory of modern microcontrollers is accessed either by reading and writing
special registers in the CPU address space or by utilizing a special flash access interface implemented
in the microcontroller’s system firmware. In either case, the flash media can typically be written or
erased on a per-block basis, which means that only one block of fixed size can be written or erased at
a time. Therefore, the exact implementation of SysFlashWrite_ and SysFlashErase_ functions can be
quite complicated, since it might be necessary to have an additional translation layer converting write
and erase requests given for arbitrary flash regions to write and erase operations that can be
performed for physical blocks of flash media.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 69 of 74
CODESYSControlV3_uRTS_Manual.doc

The Cortex-M3 MicroRTS reference implementation uses IAP (In-Application Programming) interface
available in the LPC1768 chip to access integrated flash memory (see
Platforms\Native\CortexM3\NXP-LPC1768\Sys\SysFlashCortexM3.c and
Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\src\Source\System\ lpc17xx_flsh.c
for details). All the write requests are stored in a special IAP cash buffer reserved in the linker
configuration file:
/* Platforms\Native\CortexM3\NXP-LPC1768\Projects\CodeSourcery\CODESYS.ld fragment */
MEMORY
{
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x0080000

/* 32 upper bytes area is used by IAP, 64 bytes reserved */

 SRAM (rwx) : ORIGIN = 0x10000000, LENGTH = 0x7FC0

 … other entries

 /* IAP buffer area */
 IAP_BUF (rwx) : ORIGIN = 0x20083000, LENGTH = 0x400

 … other entries
}

The write requests are cashed while the size of cached data is less than the cash size (1024 bytes) or
until the SysFlashFlush_ routine is called. In latter case, the whole cash content is being written to the
corresponding sector of flash media. Such a non-trivial handling is forced by the requirement that only
256/512/1024/4096-aligned memory SRAM addresses are allowed to be used for copying SRAM
content to flash. The read requests are implemented by a simple memory copy operation.

SysFlashGetPhysicalAddress and SysFlashGetSize routines return the beginning address and size of
flash memory used for storing code, constant data and file system emulation. If the flash area type
passed to these routines is FA_CODE, they should return the values specified in the device description
file for code area (see section 5.2.5.2).

The CmpSettingsEmbedded component may also contain the following parameters for the SysFlash
and SysFileFlash component:
/* Platforms\Native\CortexM3\NXP-LPC1768\sysdefines.h */

#define FILE1_SIZE 0x10000
#define FLASH_ERASE_BLOCK_SIZE 0x10000
#define FLASH_WRITE_BLOCK_SIZE 1024

/* File system emulation: */
/* Application.app can be accessed via SysFile interface. */
#define FILE_MAP FILE_DESC m_FileSystem[] = \
{ \
 /* Name Offset MaxSize read index write index */ \
 {"Application.app", 0x0, FILE1_SIZE, 0xFFFFFFFF, 0xFFFFFFFF}, \
};

#define SETTG_ENTRIES_INT \
 {"SysFlash", "WriteBlockSize", FLASH_WRITE_BLOCK_SIZE }, \
 {"SysFlash", "EraseBlockSize", FLASH_ERASE_BLOCK_SIZE}, \
 {0, 0, 0}

The m_FileSystem array contains a flat list of file names mapped to the corresponding flash memory
regions to provide a file system emulation required by the CmpAppEmbedded component. In the
example above, the Application.app file size is the same as the code area size, which means that the
code area will be erased, if the SysMemFreeArea function is called.

The two parameters WriteBlockSize and EraseBlockSize can be used to specify sizes of blocks that
can be written and erased in a single low-level operation. These parameters are used in the SysFlash
component root module.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 70 of 74
CODESYSControlV3_uRTS_Manual.doc

5.5.7 Implementing Exceptions Handling
In order to have a possibility to support exceptions handling mechanism implemented in MicroRTS, the
C runtime library of the toolchain should support the setjmp/longjmp functionality to provide “non-local
jumps”.

The following steps should be made to support proper handling for exceptions that might occur in an
IEC code:

1. Add the SysExcept component root module to the build configuration and specify the
corresponding component name in the components list header file.

2. Create a secondary platform-dependent C module for the SysExcept component and add it to the
build configuration.

3. Define the following macros in the sysdefines.h header file:

/* sysdefines.h */
#define RTS_STRUCTURED_EXCEPTION_HANDLING
#define RTS_IECTASK_STRUCTURED_EXCEPTION_HANDLING
#define EXCPT_MAX_NUM_OF_SEH_HANDLER 1
#define EXCPT_NUM_OF_STATIC_CONTEXT 2
#define EXCPT_DEFAULT_NUM_OF_INTERFACES 1

3. Create an exception handling routine in the SysExcept component secondary module and make

a call to this routine from the primary exception/fault handler typically written in assembly
language to pick up the correct exception context.

This routine should check whether or not the exception occurred in an IEC code area. If it was the
case, a variable of type RegContext has to be filled out with the values of exception context
registers including the frame pointer (BP), the instruction pointer (IP) and the stack pointer.
Please make sure that the RegContext variable contains the context information referring to the
exact point where exception occurred. (Note: In the CortexM3 MicroRTS reference
implementation, it’s appeared to be necessary to disable the Write Buffer for CPU-to-Memory
transfers, otherwise most types of exceptions fired by the Cortex-M3 core were imprecise. See
the NVIC_SCBDeInit routine in Platforms\Native\CortexM3\NXP-
LPC1768\Projects\CodeSourcery\src\Source\System\ lpc17xx_nvic.c for details.)

Then determine the reason for the exception and convert it to a platform independent value
defined in the SysExcept component interface (see RTSEXCPT_ macros in SysExceptItf.m4).
Put the reason value to a local variable of type ExceptionCode (to the ulCode field). Set to 0 the
bOSException field in this variable.

Reset a hardware bit (if it is required for the CPU in use) indicating the reason for an exception to
continue execution.

Make a call to the SysExceptGenerateException routine with the first parameter set to
RTS_INVALID_HANDLE, the second – to the value of local variable of type ExceptionCode filled
in as explained above, and the third – to the value of local variable of type RegContext containing
the correct exception context.

4. In the platform initialization sysInit routine, enable all the exceptions, which need to be handled.

5. Implement the following functions in the SysCpuHandling component secondary module:

SysCpuGetCallstackEntry: this routine should obtain a frame pointer and a return address of the
previous caller out of the current frame pointer.

SysCpuGetCallstackEntry2: this routine should make a call to the SysCpuGetCallstackEntry, if an
exception occurred in an IEC code area. Otherwise, it should utilize another approach to correctly
unwind the call stack in the MicroRTS code segment.

SysCpuGetInstancePointer: this routine should retrieve a pointer to an instance of Functional
Block. The location depends on the CODESYS code generator for a specific CPU.

SysCpuGetMonitoringBase: this routine is used to obtain a frame pointer of an IEC function for

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 71 of 74
CODESYSControlV3_uRTS_Manual.doc

monitoring local variables.

5.6 Adapting Communications
The communication infrastructure of the CODESYS runtime system can be adapted for the MicroRTS
profile in a similar way as it is done for the compact profile. The following considerations are worth
mentioning:

1. Only one block driver can be used in the MicroRTS and compact profiles. If two block drivers are
added accidentially, the first of them listed in the components list header file will be active.

2. Care should be taken when reserving communication buffers. Reserve only a minimal necessary
amount of memory and double-check buffers sizes after building the MicroRTS binary
executable.

3. Some third-party libraries that can be used for implementing the SysSocketEmbedded
component interface contain code leading to an unaligned access exception on ARM-based
CPUs. The Cortex-M3 MicroRTS implementation for the TI-LM3S9B96 is shipped with such a
library, that’s why the UNALIGN_TRP fault is not enabled in this implementation.

5.7 Configuring the Logger
To support the CmpLogEmbedded component in the MicroRTS:

1. Add the CmpLogEmbedded component to the components list header file.

2. Exclude CMPLOG_NOTIMPLEMENTED and CMPLOGSRV_NOTIMPLEMENTED macros from
the exclusion header file.

3. Include CmpLogEmbedded.c and CmpLogEmbeddedSrv.c modules to the build configuration.

4. Define the following macros in the sysdefines.h header file:
#define LOG_STD_MAX_NUM_OF_FILES 0
#define LOG_STD_MAX_FILE_SIZE 0
#define LOG_STD_MAX_NUM_OF_ENTRIES 5
#define LOG_MAX_INFO_LEN 96

Note: Please keep the value of LOG_STD_MAX_NUM_OF_ENTRIES as small as possible.

5.8 Implementing a Debugging Console
The source code delivered with the Cortex-M3 MicroRTS Starter Package contains a light-weight
infrastructure for implementing a debugging console over serial line (or some other similar interface).

If the target device has a serial port not used for the runtime communication purposes, the following
steps could be made to enable a debugging console:

1. Implement the following routine in the platform-dependent source code:
#ifdef SERIAL_CON_ENABLED

#if !defined(SER_CON_INT_BUFFER_SIZE) || (SER_CON_INT_BUFFER_SIZE < 256)
#define SER_CON_INT_BUFFER_SIZE 256
#endif

#ifndef CON_PORT
define CON_PORT UART2_BASE
#endif

#ifndef RTS_SIZE_DEFINED
typedef size_t RTS_SIZE;
#endif

extern int CMUtlPortableVsnprintf(char* str, RTS_SIZE buf_len, const char* fmt, va_list ap);

void con_out(const char* format, ...)

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 72 of 74
CODESYSControlV3_uRTS_Manual.doc

{
 va_list args;
 RTS_SIZE len = 0;
 char buffer[SER_CON_INT_BUFFER_SIZE];

 va_start(args, format);
 CMUtlPortableVsnprintf(buffer, SER_CON_INT_BUFFER_SIZE, format, args);
 va_end(args);

 for (len = 0; len < (SER_CON_INT_BUFFER_SIZE - 2) && buffer[len] != '\0'; ++len);

 /* len = strlen(buffer); */
 buffer[len++] = '\0';

 UARTCharPutLine(CON_PORT, (uint8_t*)buffer, len);
}

#else
void con_out(const char* format, ...) { }
#endif

The CON_PORT macro specifies the serial port base address to be used for a console port.

2. Implement the UARTCharPutLine routine or use an existing implementation from a third-party
library. This routine should write a sequence of bytes to a serial port synchronously.

3. Define the SERIAL_CON_ENABLED macro in the sysdefines.h header file (or in the make-file).

The following code snippet illustrates the usage serial console in the MicroRTS source code:
#include "CmpStd.h"

#ifdef PATHS_RELATIVE
 #include "SysExcept/SysExceptDep.h"
#else
 #include "SysExceptDep.h"
#endif

USEIMPORT_STMT

/* If this header file is included, all occurrences of M_DBG */
/* are replaced for empty strings. */
/* #include <_OptionalIncludes/Utils/dbg/udbg.h> */

/* If this header file is included, all occurrences of M_DBG */
/* are replaced for calls to printf. */
#include <_OptionalIncludes/Utils/dbg/idbg.h>

void cm3_hard_fault_trap (RTS_UI32* excpt_context, RTS_UI32 iecBP)
{
 unsigned int stacked_r0;
 unsigned int stacked_r1;
 unsigned int stacked_r2;
 unsigned int stacked_r3;
 unsigned int stacked_r12;
 unsigned int stacked_lr;
 unsigned int stacked_pc;
 unsigned int stacked_psr;

 stacked_r0 = ((unsigned long) excpt_context[0]);
 stacked_r1 = ((unsigned long) excpt_context[1]);
 stacked_r2 = ((unsigned long) excpt_context[2]);
 stacked_r3 = ((unsigned long) excpt_context[3]);

 stacked_r12 = ((unsigned long) excpt_context[4]);
 stacked_lr = ((unsigned long) excpt_context[5]);
 stacked_pc = ((unsigned long) excpt_context[6]);
 stacked_psr = ((unsigned long) excpt_context[7]);

 M_DBG ("\n\nHard Fault occurred!\r\n");
 M_DBG1 ("R0 = %X\r\n", stacked_r0);
 M_DBG1 ("R1 = %X\r\n", stacked_r1);
 M_DBG1 ("R2 = %X\r\n", stacked_r2);
 M_DBG1 ("R3 = %X\r\n", stacked_r3);
 M_DBG1 ("R12 = %X\r\n", stacked_r12);

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 73 of 74
CODESYSControlV3_uRTS_Manual.doc

 M_DBG1 ("LR [R14] = %X subroutine call return address\r\n", stacked_lr);
 M_DBG1 ("PC [R15] = %X program counter\r\n", stacked_pc);
 M_DBG1 ("PSR = %X\r\n", stacked_psr);
 M_DBG1 ("BFAR = %X\r\n", (*((volatile unsigned long *)(0xE000ED38))));
 M_DBG1 ("CFSR = %X\r\n", (*((volatile unsigned long *)(0xE000ED28))));
 M_DBG1 ("HFSR = %X\r\n", (*((volatile unsigned long *)(0xE000ED2C))));
 M_DBG1 ("DFSR = %X\r\n", (*((volatile unsigned long *)(0xE000ED30))));
 M_DBG1 ("AFSR = %X\r\n", (*((volatile unsigned long *)(0xE000ED3C))));
 M_DBG1 ("SCB_SHCSR = %X\r\n", SCB->SHCSR);

 /* NOTE: CPU reset might be issued here */
 lpc17xx_wdt_reset();

 while (1);
}

If the _OptionalIncludes/Utils/dbg/idbg.h header is included to a C module, all occurrences of the
M_DBG macros that follow after this include directive will be replaced for calls to printf (which, in turn,
will be replaced for con_out, if the SERIAL_CON_ENABLED macro is defined).

If the _OptionalIncludes/Utils/dbg/udbg.h header is included to a C module instead of idbg.h, all
occurrences of the M_DBG macros that follow after this include directive will be replaced for empty
lines.

CODESYS Control V3 MicroRTS Programmer's Guide

 3S-Smart Software Solutions GmbH Page 74 of 74
CODESYSControlV3_uRTS_Manual.doc

Change History

Version Description Editor Date

0.1 Issued AL 25.05.2012

0.2 Review AH 14.06.2012

1.0 Release AH 10.07.2012

1.1 CDS-29303 MN 17.09.2012

2.0 Release MN 03.12.2012

	1 Introduction
	1.1 About This Manual
	1.2 Related Documents

	2 Reference Implementation Quickstart Guide
	2.1 What is the CODESYS V3 MicroRTS Reference Implementation?
	2.2 Supported Features
	2.3 Hardware and software requirements
	2.4 Installation
	2.4.1 Prerequisites
	2.4.2 Installation Process

	2.5 Evaluating Cortex-M3 MicroRTS
	2.5.1 Overview
	2.5.2 Building the Firmware
	2.5.3 Connecting to the Target
	2.5.4 Downloading the Firmware
	2.5.5 Installing Device Description Files
	2.5.6 Configuring the CODESYS V3 Gateway
	2.5.7 Creating a Test Project in CODESYS IDE
	2.5.7.1 Creating the simplest basic project
	2.5.7.2 Accessing Hardware in CODESYS Application

	2.5.8 LPC1768-Stick LED Indication

	3 Cortex-M3 MicroRTS Starter Package Content
	3.1 Overview
	3.2 Supported Targets
	3.3 Toolchain
	3.3.1 Build Tools for C Development
	3.3.2 Drivers for Downloading and Debugging

	3.4 Source Files
	3.4.1 Overview
	3.4.2 Platform Independent Source Files
	3.4.3 Platform Specific Source Files
	3.4.3.1 Overview
	3.4.3.2 NXP-LPC1768 Folder Content
	3.4.3.3 TI-LM3S9B96_uRTS Folder Content

	3.5 Build Utilities

	4 Architecture
	4.1 Overview
	4.2 MicroRTS Features
	4.3 Differences Between the MicroRTS and Other Runtime System Profiles
	4.4 Components Management
	4.4.1 Component Defined
	4.4.2 Component Source Code Organization
	4.4.2.1 Component Source Code
	4.4.2.2 Root Module Requirements
	4.4.2.3 Secondary Module Requirements
	4.4.2.4 Subordinate Modules Requirements

	4.4.3 Simplified Component Manager
	4.4.3.1 Overview
	4.4.3.2 Components List
	4.4.3.3 Excluding Components Functionality

	4.5 Runtime Operation
	4.5.1 Startup Sequence
	4.5.2 Operating Mode

	5 Implementing the MicroRTS
	5.1 Overview
	5.2 Creating Device Description File
	5.2.1 Overview
	5.2.2 Specifying Device Identification and Device Information
	5.2.3 Specifying Runtime Features
	5.2.4 Configuring Codegenerator
	5.2.5 Creating Memory Layout
	5.2.5.1 Overview
	5.2.5.2 Defining Code Area(s)
	5.2.5.3 Defining Data Area(s)

	5.2.6 Setting-up Tasks

	5.3 Organizing the MicroRTS Source Tree
	5.3.1 Source Tree Layout
	5.3.2 Mandatory Configuration Macros for the MicroRTS Profile

	5.4 Defining Components
	5.4.1 Components Source Code Modifications
	5.4.2 Adding Components to the MicroRTS Build Configuration

	5.5 Adapting Core System Components
	5.5.1 Overview
	5.5.2 Specifying Target Identification
	5.5.3 Implementing CPU-specific Functions
	5.5.4 Implementing Memory Management
	5.5.4.1 Overview
	5.5.4.2 Defining the Runtime Stack
	5.5.4.3 Defining the Runtime Free Storage (Heap)
	5.5.4.4 Defining IEC Application Areas
	5.5.4.5 Fixed-size Memory Blocks Allocation

	5.5.5 Implementing System Ticks
	5.5.6 Implementing Access to a Flash Memory
	5.5.7 Implementing Exceptions Handling

	5.6 Adapting Communications
	5.7 Configuring the Logger
	5.8 Implementing a Debugging Console

